Skip to main content
Log in

Spark Plasma Sintering of Ti-48Al-2Cr-2Nb Alloy Powder and Characterization of an Unexpected Phase

  • Characterization of Advanced Sintering Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The difficulty of achieving full densification of TiAl powder by pressureless sintering makes spark plasma sintering (SPS) an attractive alternative. In this study, Ti-48Al-2Cr-Nb alloy was fabricated by SPS from gas-atomized TiAl powder. Near-full densification was achieved after 4 min at 1100°C under applied pressure of 80 MPa, accompanied by the formation of an unexpected bright-contrast phase when observed under backscattered scanning electron microscopy. Detailed characterization revealed that the bright-contrast phase was composed of oxygen- and carbon-enriched α-Ti and chromium-enriched β-Ti. A two-particle model was used to simulate the current passing through the particles during SPS. The model predicts that when a high density of current passes through the narrow particle–particle contact area, it can produce a high-temperature zone (~ 1-μm-thick surface layer), in which the temperature is high enough to allow the decomposition of the surface oxide layer and melting of the TiAl alloy underneath. These complex changes lead to the formation of the unexpected phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.E. Alman, Intermetallics 13, 572 (2005).

    Article  Google Scholar 

  2. R. Gerling, H. Clemens, and F.P. Schimansky, Adv. Eng. Mater. 6, 23 (2004).

    Article  Google Scholar 

  3. U. Habel and B.J. McTiernan, Intermetallics 12, 63 (2004).

    Article  Google Scholar 

  4. L. Zhao, J. Beddoes, P. Au, and W. Wallace, Adv. Perform. Mater. 4, 421 (1997).

    Article  Google Scholar 

  5. R. Gerling and F.P. Schimansky, Mater. Sci. Eng. A 329, 45 (2002).

    Article  Google Scholar 

  6. H.M. Zhang, X.B. He, X.H. Qu, and L.M. Zhao, Mater. Sci. Eng. A 526, 31 (2009).

    Article  Google Scholar 

  7. W. Limberg, T. Ebel, F.P. Schimansky, R. Hoppe, M. Oehring, and F. Pyczak, Euro PM2009, (2009).

  8. Y.H. Wang, J.P. Lin, Y.H. He, Y.L. Wang, and G.L. Chen, Intermetallics 16, 215 (2008).

    Article  Google Scholar 

  9. X. Lu, X.B. He, B. Zhang, L. Zhang, X.H. Qu, and Z.X. Guo, Intermetallics 17, 840 (2009).

    Article  Google Scholar 

  10. H. Jabbar, J.P. Monchoux, F. Houdellier, M. Dollé, F.P. Schimansky, F. Pyczak, M. Thomas, and A. Couret, Intermetallics 18, 2312 (2010).

    Article  Google Scholar 

  11. M. Schloffer, F. Iqbal, H. Gabrisch, E. Schwaighofer, F.P. Schimansky, S. Mayer, A. Stark, T. Lippmann, M. Göken, F. Pyczak, and H. Clemens, Intermetallics 22, 231 (2012).

    Article  Google Scholar 

  12. A. Huang, D. Hu, M.H. Loretto, J. Mei, and X. Wu, Scripta Mater. 56, 253 (2007).

    Article  Google Scholar 

  13. M. Omori, Mater. Sci. Eng. A 287, 183 (2000).

    Article  Google Scholar 

  14. S.I. Cha, S.H. Hong, and B.K. Kim, Mater. Sci. Eng. A 351, 31 (2003).

    Article  Google Scholar 

  15. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).

    Article  Google Scholar 

  16. C. Shearwood, Y.Q. Fu, L. Yu, and K.A. Khor, Scripta Mater. 52, 455 (2005).

    Article  Google Scholar 

  17. T. Takeuchi, E. Bétourné, M. Tabuchi, H. Kageyama, Y. Kobayashi, A. Coats, F. Morrison, D.C. Sinclair, and A.R. West, J. Mater. Sci. 34, 917 (1999).

    Article  Google Scholar 

  18. A. Couret, G. Molenat, J. Galy, and M. Thomas, Intermetallics 16, 1134 (2008).

    Article  Google Scholar 

  19. Y.H. Wang, J.P. Lin, Y.H. He, Y.L. Wang, and G.L. Chen, Mater. Sci. Eng. A 489, 55 (2008).

    Article  Google Scholar 

  20. M. Tokita, E. Bldg, and K. Sc, Mechanism of Spark Plasma Sintering, Proceeding of the International Symposium on Microwave. 1997.

  21. Z.H. Zhang, Z.F. Liu, J.F. Lu, X.B. Shen, F.C. Wang, and Y.D. Wang, Scripta Mater. 81, 56 (2014).

    Article  Google Scholar 

  22. J. Diatta, G. Antou, N. Pradeilles, and A. Maître, J. Eur. Ceram. Soc. 37, 4849 (2017).

    Article  Google Scholar 

  23. Z. Trzaska, A. Couret, and J.P. Monchoux, Acta Mater. 118, 100 (2016).

    Article  Google Scholar 

  24. G. Liu, R. Li, T. Yuan, Z. Mei, and F. Zeng, Int. J. Refract. Met. H. 66, 68 (2017).

    Article  Google Scholar 

  25. R. Chaim and M. Margulis, Mater. Sci. Eng. A 407, 180 (2005).

    Article  Google Scholar 

  26. R. Chaim, Mater. Sci. Eng. A 443, 25 (2007).

    Article  Google Scholar 

  27. D. Demirskyi, H. Borodianska, D. Agrawal, A. Ragulya, Y. Sakka, and O. Vasylkiv, J. Alloys Compd. 523, 1 (2012).

    Article  Google Scholar 

  28. J.M. Frei, U. Anselmi-Tamburini, and Z.A. Munir, J. Appl. Phys. 101, 1 (2007).

    Article  Google Scholar 

  29. X. Song, X. Liu, and J. Zhang, J. Am. Ceram. Soc. 89, 494 (2006).

    Article  Google Scholar 

  30. D.M. Hulbert, A. Anders, D.V. Dudina, J. Andersson, D. Jiang, C. Unuvar, U. Anselmi-Tamburini, E.J. Lavernia, and A.K. Mukherjee, J. Appl. Phys. 104, 33305 (2008).

    Article  Google Scholar 

  31. M. Hulbert, A. Anders, J. Anderson, E.J. Lavernia, and A.K. Mukherjee, Scripta Mater. 60, 835 (2009).

    Article  Google Scholar 

  32. T.B. Holland, U. Anselmi-Tamburini, D.V. Quach, T.B. Tran, and A.K. Mukherjee, J. Eur. Ceram. Soc. 32, 3667 (2012).

    Article  Google Scholar 

  33. G. Ji, T. Grosdidier, N. Bozzolo, and S. Launois, Intermetallics 15, 108 (2007).

    Article  Google Scholar 

  34. M. Kyoung II, K. Seung Chul, and L. Kyung Sub, Intermetallics. 10, 185 (2002).

  35. Y. Xia, S.D. Luo, X. Wu, G.B. Schaffer, and M. Qian, Mater. Sci. Eng. A 559, 293 (2013).

    Article  Google Scholar 

  36. C. Collard, Z. Trzaska, L. Durand, J.M. Chaix, and J.P. Monchoux, Powder Tech. 321, 458 (2017).

    Article  Google Scholar 

  37. T. Saunders, S. Grasso, and M.J. Reece, J. Eur. Ceram. Soc. 35, 871 (2015).

    Article  Google Scholar 

  38. N. Chawake, L.D. Pinto, A.K. Srivastav, K. Akkiraju, B.S. Murty, and R.S. Kottada, Scripta Mater. 93, 52 (2014).

    Article  Google Scholar 

  39. D. Veeraraghavan, U. Pilchowski, B. Natarajan, and V.K. Vasudevan, Acta Mater. 46, 405 (1998).

    Article  Google Scholar 

  40. R. Przeliorz, M. Goral, G. Moskal, and L. Swadzba, J. Achiev. Mater. Manuf. Eng. 21, 48 (2007).

    Google Scholar 

  41. I. Egry, R. Brooks, D. Holland-Moritz, R. Novakovic, T. Matsushita, E. Ricci, S. Seetharaman, R. Wunderlich, and D. Jarvis, Int. J. Thermophys. 28, 1026 (2007).

    Article  Google Scholar 

  42. J.M. Montes, F.G. Cuevas, and J. Cintas, Appl. Phys. A 92, 375 (2008).

    Article  Google Scholar 

  43. G.B. Naumov, B.N. Ryzhenko, and I.L. Khodakovsky, Handbook of thermodynamic data (Menlo Park, CA: U.S. Geological Survey, Water Resources Division, 1974).

    Google Scholar 

  44. A. Nérac-Partaix, A. Huguet, and A. Menand, Gamma Titanium Aluminides, 124th TMS Annual Meeting (Las Vegas: Warrendale, 1995), pp. 197–202.

    Google Scholar 

  45. C. Scheu, E. Stergar, M. Schober, L. Cha, H. Clemens, A. Bartels, F.P. Schimansky, and A. Cerezo, Acta Mater. 57, 1504 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

Y. Xia would like to thank Dr. Don Rodrigo of Monash University for assistance in the use of the spark plasma sintering system, Dr. Barry Wood of The University of Queensland for x-ray photoelectron spectroscopy (XPS) analysis, and Central South University for start-up funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Zhao, J.L. & Qian, M. Spark Plasma Sintering of Ti-48Al-2Cr-2Nb Alloy Powder and Characterization of an Unexpected Phase. JOM 71, 2556–2563 (2019). https://doi.org/10.1007/s11837-019-03590-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03590-w

Navigation