Skip to main content
Log in

Investigation of Hot Cracking Behavior in Transverse Mechanically Arc Oscillated Autogenous AA2014 T6 TIG Welds

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hot cracking studies on autogenous AA2014 T6 TIG welds were carried out. Significant cracking was observed during linear and circular welding test (CWT) on 4-mm-thick plates. Weld metal grain structure and amount of liquid distribution during the terminal stages of solidification were the key cause for hot cracking in aluminum welds. Square-wave AC TIG welding with transverse mechanical arc oscillation (TMAO) was employed to study the cracking behavior during linear and CWT. TMAO welds with amplitude = 0.9 mm and frequency = 0.5 Hz showed significant reduction in cracking tendency. The increase in cracking resistance in the arc-oscillated weld was attributed to grain refinement and improved weld bead morphology, which improved the weld metal ductility and uniformity, respectively, of residual tensile stresses that developed during welding. The obtained results were comparable to those of reported favorable results of electromagnetic arc oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P.O. Puzak, W.R. Apblett, and W.S. Pellini: Weld. J., 1956, vol. 35 (1), pp. 9–20.

    Google Scholar 

  2. J.E. Steenbergen and H.R. Thornton: Weld. J., 1970, vol. 49 (2), pp. 61s–68s.

    Google Scholar 

  3. F.C. Hull: Weld. J., 1967, vol. 46 (9), pp. 399s–409s.

    CAS  Google Scholar 

  4. C.E. Cross: Hot Cracking Phenomena in Welds, Springer, New York, NY, 2005, pp. 318.

    Book  Google Scholar 

  5. M. Miyazaki, K. Nishio, M. Katoh, S. Mukae, and H.W. Kerr: Weld. J., 1990, vol. 69 (9), pp. 362s–71s.

    Google Scholar 

  6. S. Kou: JOM, 2003, vol. 6, pp. 37–42.

    Article  Google Scholar 

  7. G.J. Davies and J.G. Garland: Int. Met. Rev., 1975, vol. 20, pp. 85–105.

    Article  Google Scholar 

  8. A.R.E. Singer and P.H.J. Jennings: Inst. Met., 1947, vol. 73, pp. 273–84.

    CAS  Google Scholar 

  9. J.L. Robinson and M.H. Scott: Phil. Trans. R. Soc. London, 1980, vol. A285, pp. 105–17.

    Google Scholar 

  10. C. Huang and S. Kou: Weld. J., 2004, vol. 83 (2), pp. 50–58.

    Google Scholar 

  11. J.C. Lippold: Hot Cracking Phenomena in Welds, Springer-Verlag, Berlin, Germany, 2005, pp. 271–90.

    Book  Google Scholar 

  12. J.C.M. Farrar: Hot Cracking Phenomena in Welds, Springer, New York, NY, 2005, pp. 291–304.

    Book  Google Scholar 

  13. H. Heuser: Hot Cracking Phenomena in Welds, Springer, New York, NY, 2005, pp. 305–27.

    Book  Google Scholar 

  14. E. Cical˘a, G. Duffet, H. Andrzejewski, D. Grevey, and S. Ignata: Mater. Sci. Eng. A, 2005, vol. 395, pp. 1–9.

    Article  Google Scholar 

  15. G.M. Goodwin: “Test Methods for Evaluating Hot Cracking: Review and Perspectives,” Energy Citation Database, Science Accelerator, OTSI, US Department of Energy, 1990, pp. 1–26.

  16. T.W. Nelson, J.C. Lippold, W. Lin, and W.A. Baeslack III: Weld. J., 1997, vol. 76 (3), pp. 11019.

    Google Scholar 

  17. S. Kou: Welding Metallurgy, 2nd ed., John Wiley and Sons, New York, NY, 2003, pp. 321–24.

    Google Scholar 

  18. H. Yunjia, R.H. Frost, D.L. Olson, and G.R. Edwards: Weld. J., 1989, vol. 68, pp. 280–88.

    Google Scholar 

  19. M.J. Dvornak, R.H. Frost, and D.L. Olson: Weld. J., 1989, vol. 68, p. 327s.

    Google Scholar 

  20. V. Balasubramanian, V. Ravisankar, and G. Madhusudhan Reddy: Mater. Sci. Eng. A, 2007, vol. 2459, pp. 19–34.

    Google Scholar 

  21. Y.M. Zhang, C. Pan, and A.T. Male: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2537–43.

    Article  CAS  Google Scholar 

  22. J.C. Villafuerte and H.W. Kerr: Weld. J., 1990, vol. 69, pp. 1s–13s.

    Google Scholar 

  23. S.P. Tewari: Thammasat Int. J. Sci. Technol., 2009, vol. 14 (4), pp. 17–27.

    Google Scholar 

  24. S. Kou and Y. Le: Weld. J., 1986, vol. 65 (12), pp. 305–13s.

    Google Scholar 

  25. S. Kou and Y. Le: Metall. Trans. A, 1985, vol. 16A, pp. 1345–52.

    CAS  Google Scholar 

  26. S. Kou and Y. Le: Weld. J., 1985, vol. 64 (3), pp. 51s–55s.

    Google Scholar 

  27. S. Sundaresan and G.D. Janakiram: Sci. Technol. Weld. Join., 1999, vol. 4, pp. 151–61.

    Article  CAS  Google Scholar 

  28. C.-F. Tseng and W.F. Savage: Weld. J., 1971, vol. 51 (11), pp. 777–85.

    Google Scholar 

  29. S.R. Koteswara Rao, G.M. Reddy, M. Kamaraj, and K. Prasad Rao: Mater. Sci. Eng. A, 2005, vol. 404, pp. 227–34.

    Article  Google Scholar 

  30. J.G. Garland: Met. Construct., Br. Weld. J., 1974, vol. 55 (4), pp. 121–27.

    Google Scholar 

  31. TIG Welding Handbook, Miller Electric Mfg. Co., Appleton, pp. 5–18.

  32. Ador Welding Limited: Modern Welding, Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 2005, pp. 275–78.

  33. Operational Manual MO-150 Mechanical Oscillator, Jetline Engineering Inc., Irvine, CA, pp. 5–38.

  34. A. Kumar, P. Shailesh, and S. Sundarrajan: Mater. Des., 2008, vol. 29, pp. 1904–13.

    Article  CAS  Google Scholar 

  35. N.S. Biradar, S. Mishra, and R. Raman: Materials Research Symp.-MR-10, IIT Bombay, Bombay, 2010, pp. 72–73.

    Google Scholar 

  36. J.H. Dudas and F.R. Collins: Weld. J., 1966, vol. 45, pp. 241s–49s.

    Google Scholar 

  37. T.-L. Teng, P.-H. Chang, and H.-C. Ko: Int. J. Pressure Vess. Pip., 2000, vol. 77, pp. 643–50.

    Article  Google Scholar 

  38. N.S. Biradar and R. Raman: Proc. IIW Int. Conf. on Joining, Cutting, and Surfacing Technology, D.V. Kulkarni, Manish Samant, S. Krishnan, Amitava De, J. Krishnan, H. Patel, and A.K. Bhaduri, eds., Chennai, 2011, pp. 371–79.

  39. ASM Specialty Handbook: Aluminum and Aluminum Alloys, J.R. Davis, ed., ASM INTERNATIONAL, Materials Park, OH, 1994, pp. 376–419.

  40. J.A. Brooks and J.J. Dike: Proc. 5th Int. Conf. on International Trends in Welding Research, Pine Mountain, GA, June 1998, ASM INTERNATIONAL, Materials Park, OH, 1999, pp. 695–99.

  41. D.M. Douglass, J. Mazumder, and K. Nagarathnam: Proc. 4th Int. Conf. on Trends in Welding Research, Gatlinburg, TN, June 1995, pp. 467–78.

  42. K. Easterling: Introduction to Physical Metallurgy of Welding, Butterworth and Co. Ltd., Mosco, 1983, pp. 55–66.

    Google Scholar 

  43. L.F. Mondolfo: Aluminum Alloys Structure and Properties, Butterworth and Co., London, 1976, pp. 693–700.

    Google Scholar 

  44. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974, pp. 73–83.

    Google Scholar 

  45. R.W. Messler, Jr.: Principles of Welding, John Wiley and Sons, Inc., New York, NY, 1999, pp. 175–76.

Download references

Acknowledgments

The authors thank the Indian Space Research Organization (ISRO, Trivandrum, India) for providing the material AA2014 aluminum alloy in the T6 condition necessary for carrying out the experiments in the research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Biradar.

Additional information

Manuscript submitted October 13, 2011.

Appendices

Appendix: Calculation of effective welding speed (w)

$$ \begin{aligned} w & = \left( {u^{2} + v^{2} } \right)^{1/2} \\ &= \left( {3.6^{2} + 1.8^{2} } \right)^{1/2} \\ & = 4.02\,{\text{mm}}/{\text{s }}\left( {\text{linear welding}} \right) \\ & = \left( {5.3^{2} + 1.8^{2} } \right)^{1/2} \\ & = 5.6{\text{ mm}}/s \, \left( {\text{CWT welding}} \right) \\ \end{aligned} $$

where u = linear welding speed (3.6 mm/s for linear welding and 5.3 mm/s for CWT welding) and v = transverse welding speed of the torch in mm/s. Effective welding speed for the TMAO parameter (amplitude = 0.9 mm and frequency = 0.5 Hz):

$$ \begin{aligned} v & = \left( {0.9 \times 4 \times 0.5} \right){\text{ for one cycle of oscillation}} \\& = 1.8{\text{ mm}}/{\text{s}} \\ \end{aligned} $$

Heat input calculations (H Net) used for tungsten inert gas welding with and without TMAO (amplitude = 0.9 mm and frequency = 0.5 Hz)

For linear TIG welding:

$$ \begin{aligned} H_{{{\text{Net }}\left( {\text{without\,TMAO}} \right)}} &= V \times I \times \eta /u \\ & = 165 \times 13.4 \times 0.40/3.6 \\ & = 245.6 \, {\text{J}}/{\text{mm}} \\ \end{aligned} $$
$$ \begin{aligned} H_{{{\text{Net }}\left( {\text{with\,TMAO}} \right)}} & = V \times I \times \eta /w \\ & = 165 \times 13.4 \times 0.40/4.02 \\ & = 220{\text{ J}}/{\text{mm}} \\ \end{aligned} $$

For CWT TIG welding:

$$ \begin{aligned} H_{{{\text{Net }}\left( {\text{without\,TMAO}} \right)}} & = V \times I \times \eta /u \\ & = 175 \times 13.4 \times 0.40/5.3 \\ & = 176.9 \, {\text{J}}/{\text{mm}} \\ \end{aligned} $$
$$ \begin{aligned} H_{{{\text{Net }}\left( {\text{with\,TMAO}} \right)}} & = V \times I \times \eta /w \\ & = 175 \times 13.4 \times 0.40/5.6 \\ & = 167.5{\text{ J}}/{\text{mm}} \\ \end{aligned} $$

where V = voltage in volts, I = current in Amps, η = arc efficiency (assumed as 0.40 for TIG),[32] u = welding speed in mm/s (without arc oscillation), and w = effective welding speed due to TMAO in mm/s.

Cooling rate calculations, R, for TIG welds without and with TMAO (amplitude = 0.9 mm and frequency = 0.5 Hz)

For Linear TIG welding:

R = 2πkρC (τ/H Net)2 (T c T 0)3 for thin plates at full penetration were produced.[45]

$$ \begin{aligned} & R_{{\left( {\text{without\,TMAO}} \right)}} \\ &\quad = 2\pi \times 0.23 \times 0.0027\left( {4/245.6} \right)^{2} \times \left( {911.15 - 303.15} \right)^{3} \\ & \quad = 505.75{\text{ K}}\left( {232.6^\circ {\text{C}}/{\text{s}}} \right) \\ \end{aligned} $$
$$ \begin{aligned} & R_{{\left( {\text{with\,TMAO}} \right)}} \\&\quad = 2\pi \times 0.23 \times 0.0027\left( {4/220} \right)^{2} \times \left( {911.15 - 303.15} \right)^{3} \\& \quad = 563.05{\text{ K}}\left( {289.9^\circ {\text{C}}/{\text{s}}} \right) \\ \end{aligned} $$

For CWT TIG welds:

$$ \begin{aligned} & R_{{\left( {\text{without\,TMAO}} \right)}} \\ & = 2\pi \times 0.23 \times 0.0027\left( {4/176.9} \right)^{2} \times \left( {911.15 - 303.15} \right)^{3} \\ & = 721.45{\text{ K}}\left( {448.3^\circ {\text{C}}/{\text{s}}} \right) \\ \end{aligned} $$
$$ \begin{aligned} & R_{{\left( {\text{with\,TMAO}} \right)}} \\ & \quad = 2\pi \times 0.23 \times 0.0027\left( {4/167.69} \right)^{2} \times \left( {911.15 - 303.15} \right)^{3} \\ & \quad = 771.35{\text{ K}}\left( {498.2^\circ {\text{C}}/{\text{s}}} \right) \\ \end{aligned} $$

where k = thermal conductivity (J/mmK), ρC = thermal capacity (J/mm3 K), τ = thickness of the plate (mm), H Net = effective heat input (J/mm), T c  = liquidus temperature (K), and T 0 = initial temperature (K).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biradar, N.S., Raman, R. Investigation of Hot Cracking Behavior in Transverse Mechanically Arc Oscillated Autogenous AA2014 T6 TIG Welds. Metall Mater Trans A 43, 3179–3191 (2012). https://doi.org/10.1007/s11661-012-1126-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1126-4

Keywords

Navigation