Skip to main content

On the Origin of Weld Solidification Cracking

  • Chapter
Hot Cracking Phenomena in Welds

Abstract

A review is made of theories regarding weld solidification cracking, identifying the numerous factors controlling crack initiation. A new approach to understanding this phenomenon is discussed, considering the conditions necessary to achieve rupture of liquid films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cross CE, Kramer LS, Tack WT, Loechel LW (1990) Aluminum weldability and hot tearing theory. Welding of Materials. ASM Int: 275–282

    Google Scholar 

  2. Pumphrey WI, Jennings PH (1948) A consideration of the nature of brittleness and temperature above the solidus in castings and welds in aluminum alloys. J Inst Metals 75: 235–256

    Google Scholar 

  3. Pellini WS (1952) Strain theory of hot tearing. Foundry 80: 125–199

    Google Scholar 

  4. Cross CE, Olson DL (1986) Hot tearing model to asses aluminum weldability. Aluminum alloys-their physical and mechanical properties, Vol 3: 1869–1875

    Google Scholar 

  5. Lippold JC, Lin W (1996) Weldability of Al-Cu-Li alloys. Aluminum alloys — their physical and mechanical proterties. Transtec Pub: 1685–1690

    Google Scholar 

  6. Poirier DR, Yeum K, Maples AL (1987) A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys. Met Trans 18A: 1979–1987

    Google Scholar 

  7. Rappaz M, Drezet JM, Gremaud M (1999) A new hot-tearing criterion. Met Mat Trans 30A: 449–455

    Google Scholar 

  8. Kurz W, Fisher DJ (1986) Fundamentals of solidification. Trans Tech Pub: 232

    Google Scholar 

  9. Mousavi MG, Cross CE, Grong Ø, Hval M (1997) Controlling weld metal dilution for optimized weld performance in aluminum. Sci Tech Weld Join 2: 275–278

    Google Scholar 

  10. Borland JC (1960) Generalized theory of super-solidus cracking in welds and castings — an initial development. Brit Weld J 7: 508–512

    Google Scholar 

  11. Saveiko VN (1961) Theory of hot tearing. Russ Cast Prod: 453–456

    Google Scholar 

  12. Holt M, Olson DL, Cross CE (1992) Interfacial tension driven fluid flow model for hot cracking. Scripta Met Mat 26: 1119–1124

    Article  Google Scholar 

  13. Savage WF, Aronson AH (1966) Preferred orientation in the weld fusion zone. Welding J 45: 85s–89s

    Google Scholar 

  14. Brooks JA, Thompson AW (1991) Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int Met Rev: 16–43

    Google Scholar 

  15. Mousavi MG, Cross CE, Grong Ø (1999) Effect of scandium and titaniumboron on grain refinement and hot cracking of aluminum alloy 7108. Sci Tech Weld Join 4: 381–388

    Article  Google Scholar 

  16. Dixon, BF (1988) A fractographic study of weld metal solidification cracking in steels. PhD Thesis, Univ Melbourne

    Google Scholar 

  17. Cross CE, Olson DL, Edwards GR (1994) The role of porosity in initiating weld metal hot cracks. In: Modeling and control of joining processes. AWS, Miami, pp 549–557

    Google Scholar 

  18. Prokhorov NN (1956) The problem of the strength of metals while solidifying during welding. Svar Proiz 6: 5–11

    Google Scholar 

  19. Senda T, Matsuda F. Takano G (1973) Studies on solidification crack susceptibility for weld metals with trans-varestraint test. J Japan Weld Soc 42: 48–56

    Google Scholar 

  20. Chihoski RA (1972) The character of stress fields around a weld arc moving on an aluminum sheet. Weld J 51: 9s–18s

    Google Scholar 

  21. Zacharia T (1994) Dynamic stresses in weld metal hot cracking. Weld J 73: 164s–172s

    Google Scholar 

  22. Feng Z, Zacharia T, David, SA (1997) On the thermomechanical conditions for weld metal solidification cracking. In: Mathematical modelling of weld phenomena 3. Inst Materials, London, pp 114–148

    Google Scholar 

  23. Dike JJ, Brooks JA, Li M (1998) Comparison of failure criteria in weld solidification cracking simulations. In: Mathematical modelling of weld phenomena 4. Inst Materials, London, pp 199–222

    Google Scholar 

  24. Batra R, Wilber GA, Breit HF Childs WJ (1975) Programmed In Situ Melting, Freezing, and Tensile Testing for Laboratory Study of High Temperature Properties of As-Cast Metals. Journal of Testing and Evaluation, Vol 3(1): 68–74

    Google Scholar 

  25. Matsuda F, Nakagawa H, Nakata K, Okada H (1979) The VDR cracking test for solidification crack susceptibility on weld metals and its application to aluminum alloys. Trans JWRI 8: 85–95

    Google Scholar 

  26. Herold H, Streitenberger M, Pchennikov A (2001) Modelling of the PVR-test to examine the origin of different hot cracking types. In: Mathematical modelling of weld phenomena 5. Inst Metals, London, pp 783–792

    Google Scholar 

  27. Houldcroft PT (1955) A simple cracking test for use with argon-arc welding. Brit Weld J 2: 471–475

    Google Scholar 

  28. Stout RD, Tor SS, McGeady LJ, Doan GE (1946) Quantitative measurement of cracking tendency in welds. Weld J 25: 522s–532s

    Google Scholar 

  29. Robinson IB, Baysinger FR (1966) Welding aluminum alloy 7039. Weld J 45: 433s–444s

    Google Scholar 

  30. Kannengiesser Th, McInearney T, Forian W, Böllinghaus Th, Cross CE (2002) The influence of local weld deformation on hot cracking susceptibility. Mathematical modelling of weld phenomena 6. Manley, London, pp 803–818

    Google Scholar 

  31. Rindler W, Kozeschnik E, Enzinger N, Buchmayr B (2002) A modified hot tearing criterion for steels. In: Mathematical modelling of weld phenomena 6, Manley, London, pp 819–835

    Google Scholar 

  32. Fisher JC (1948) The fraction of liquids. J Appl Phys 19: 1062–1067

    Article  Google Scholar 

  33. Campbell J (1968) Pore nucleation in solidifying metals. In: The solidification of metals. Iron Steel Inst, London, pp 18–26

    Google Scholar 

  34. Feurer, U (1977) Influence of alloy composition and solidification conditions on dendrite arm spacing, feeding, and hot tear properties of aluminum alloys. In: Proceedings of the international symposium on engineering alloys, Delft: 131–145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cross, C. (2005). On the Origin of Weld Solidification Cracking. In: Böllinghaus, T., Herold, H. (eds) Hot Cracking Phenomena in Welds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27460-X_1

Download citation

Publish with us

Policies and ethics