Skip to main content
Log in

X-Ray Diffraction Analysis of Residual Stress in Thin Polycrystalline Anatase Films and Elastic Anisotropy of Anatase

  • Symposium: Coatings for Structural, Biological, and Electronic Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The importance of residual stress in anatase thin films for their photo-induced hydrophilicity was proved recently. Detailed X-ray diffraction (XRD) studies of residual stresses in titanium dioxide films are presented here. Measurements including multiple hkl reflections on several series of these films revealed the presence of tensile stresses in the films that were obtained by crystallization from amorphous state. Significant anisotropy of the strain was also found and compared with that of anatase, resulting from its theoretically calculated single-crystal elastic constants. The XRD data support the experimental evidence of the hypothesis that the [00l] axis is the elastically soft anatase direction, whereas the directions in the [h00] × [hk0] plane are elastically stiff. This is in agreement with the anisotropy predicted by single-crystal elastic constants that are obtained from ab-initio calculations. Residual stress analysis for materials with tetragonal symmetry is described and the theory is used to analyze the data. The anisotropy is very different from that for the rutile phase, and the experimental results agree well with the values calculated for anatase. A simplified method of XRD residual stress analysis in thin anatase films by total pattern fitting (TPF) is also presented. Tensile stresses are formed during the crystallization process and increase rapidly with reduced film thickness. They inhibit crystallization, which is then very slow in the thinnest films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Fujishima and X. Zhang: C.R. Chim., 2006, vol. 9, pp. 750–60.

    Article  CAS  Google Scholar 

  2. K. Hashimoto, H. Irie, and A. Fujishima: Jpn. J. Appl. Phys., 2005, vol. 44, pp. 8269–85.

    Article  CAS  Google Scholar 

  3. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe: Nature, 1997, vol. 388, pp. 431–32.

    Article  CAS  Google Scholar 

  4. N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto: J. Phys. Chem. B, 2003, vol. 107, pp. 1028–35.

    Article  CAS  Google Scholar 

  5. A. Mills, G. Hill, S. Bhopal, I.P. Parkin, and S.A. O’Neill: J. Photochem. Photobiol., A, 2003, vol. 160, pp. 185–94.

    Article  CAS  Google Scholar 

  6. I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto, and A. Fujishima: J. Photochem. Photobiol., A, 1996, vol. 98, pp. 79–86.

    Article  CAS  Google Scholar 

  7. T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake: FEMS Microbiol. Lett., 1985, vol. 29, pp. 211–14.

    Article  CAS  Google Scholar 

  8. P. Evans and D.W. Sheel: Surf. Coat. Technol., 2007, vol. 201, pp. 9319–24.

    Article  CAS  Google Scholar 

  9. P. Zeman and S. Takabayashi: J. Vac. Sci. Technol., A, 2002, vol. 20, pp. 388–93.

    Article  CAS  Google Scholar 

  10. J.N. Hart, R. Cervini, Y.-B. Cheng, G.P. Simon, and L. Spiccia: Sol. Energy Mater. Sol. Cells, 2004, vol. 84, pp. 135–43.

    Article  CAS  Google Scholar 

  11. M. Ni, M.K.H. Leung, D.Y.C. Leung, and K. Sumathy: Renewable Sustainable Energy Rev., 2007, vol. 11, pp. 401–25.

    Article  CAS  Google Scholar 

  12. D.B. Hamal and K.J. Klabunde: J. Coll. Interface Sci., 2007, vol. 311, pp. 514–22.

    Article  CAS  Google Scholar 

  13. D. Li, H. Huang, X. Chen, Z. Chen, W. Li, D. Ye, and X. Fu: J. Solid State Chem., 2007, vol. 180, pp. 2630–34.

    Article  CAS  Google Scholar 

  14. A. Mills and S. Le Hunte: J. Photochem. Photobiol., A, 1997, vol. 108, pp. 1–35.

    Article  CAS  Google Scholar 

  15. M. Anpo, T. Shima, S. Kodama, and Y. Kubokawa: J. Phys. Chem., 1987, vol. 91, pp. 4305–10.

    Article  CAS  Google Scholar 

  16. S. Takeda, S. Suzuki, H. Odaka, and H. Hosono: Thin Solid Films, 2001, vol. 392, pp. 338–44.

    Article  CAS  Google Scholar 

  17. T. Shibata, H. Irie, and K. Hashimoto: J. Phys. Chem. B, 2003, vol. 107, pp. 10696–98.

    Article  CAS  Google Scholar 

  18. T. Shibata, H. Irie, D.A. Tryk, and K. Hashimoto: J. Phys. Chem. C, 2009, vol. 113, pp. 12811–17.

    Article  CAS  Google Scholar 

  19. G. G. Stoney: Proc. R. Soc. London, Ser. A, 1909, vol. 82, pp. 172–75.

    Article  CAS  Google Scholar 

  20. G.C.A.M. Janssen, M.M. Abdalla, F. van Keulen, B.R. Pujada, and B. van Venrooy: Thin Solid Films, 2009, vol. 517, pp. 1858–67.

    Article  CAS  Google Scholar 

  21. C.-C. Jaing, H.-C. Chen, and C.-C. Lee: Opt. Rev., 2009, vol. 16, pp. 396–99.

    Article  CAS  Google Scholar 

  22. I.C. Noyan and J.B. Cohen: Residual Stress, Springer Verlag, New York, NY, 1987.

    Google Scholar 

  23. H.P. Klug and L.E. Alexander: X-ray Diffraction Procedures, John Wiley & Sons, New York, NY, 1974, p. 755.

    Google Scholar 

  24. M. Dopita and D. Rafaja: Z. Kristallogr. Suppl., 2006, No. 23, pp. 67–72.

  25. U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, and E.J. Mittemeijer: J. Appl. Crystallogr., 2005, vol. 38, pp. 1–29.

    Article  Google Scholar 

  26. E. Anastassakis, A. Pinczuk, and E. Burstein: Solid State Commun., 1970, vol. 8, pp. 133–38.

    Article  CAS  Google Scholar 

  27. J.W. Ager III and M.D. Drory: Phys. Rev. B: Condens. Matter Mater. Phys., 1993, vol. 48, pp. 2601–07.

    Article  CAS  Google Scholar 

  28. I. De Wolf: Semicond. Sci. Technol., 1996, vol. 11, pp. 139–54.

    Article  Google Scholar 

  29. S. Webster, D.N. Batchelder, and D.A. Smith: Appl. Phys. Lett., 1998, vol. 72, pp. 1478–80.

    Article  CAS  Google Scholar 

  30. I.A. Alhomoudi and G. Newaz: Thin Solid Films, 2009, vol. 517, pp. 4372–78.

    Article  CAS  Google Scholar 

  31. M.H. Grimsditch and A.K. Ramdas: Phys. Rev. B: Solid State, 1976, vol. 14, pp. 1670–82.

    CAS  Google Scholar 

  32. D.G. Isaak, J.D. Carnes, O.L. Anderson, H. Cynn, and E. Hake: Phys. Chem. Miner., 1998, vol. 26, pp. 31–43.

    Article  CAS  Google Scholar 

  33. M. Iuga, G. Steinle-Neumann, and J. Meinhardt: Eur. Phys. J. B, 2007, vol. 58, pp. 127–33.

    Article  CAS  Google Scholar 

  34. H. Yao, L. Ouyang, and W.-Y. Ching: J. Am. Ceram. Soc., 2007, vol. 90, pp. 3194–3204.

    Article  CAS  Google Scholar 

  35. E. Shojaee and M.R. Mohammadizadeh: J. Phys. Condens. Matter, 2010, p. 015401.

  36. R. Kužel, L. Nichtová, Z. Matěj, D. Heřman, J. Šicha, and J. Musil: Z. Kristallogr. Suppl., 2007, No. 26, pp. 247–52.

  37. P. Baroch, J. Musil, J. Vlček, K.H. Nam, and J.G. Han: Surf. Coat. Technol., 2005, vol. 193, pp. 107–11.

    Article  CAS  Google Scholar 

  38. J. Musil, D. Heřman, and J. Šícha: J. Vac. Sci. Technol. A, 2006, vol. 24, pp. 521–28.

    Article  CAS  Google Scholar 

  39. L. Nichtová, R. Kužel, Z. Matěj, J. Šícha, and J. Musil: Z. Kristallogr. Suppl., 2009, No. 30, pp. 235–40.

  40. R. Kužel, L. Nichtová, and Z. Matěj: Thin Solid Films, 2010, vol. 519, pp. 1649–54.

  41. T. Arlt, M. Bermejo, M.A. Blanco, L. Gerward, J.Z. Jiang, J.S. Olsen, and J.M. Recio: Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 61, pp. 14414-1–14414-6.

    Article  Google Scholar 

  42. V. Swamy and L.S. Dubrovinsky: J. Phys. Chem. Solids, 2001, vol. 62, pp. 673–75.

    Article  CAS  Google Scholar 

  43. J. Muscat, V. Swamy, and N.M. Harrison: Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, pp. 224112-1–224112-15.

    Google Scholar 

  44. J.F. Nye: Physical properties of crystals, Clarendon Press, Oxford, 2008, pp. 137–49.

    Google Scholar 

  45. Y.I. Sirotin and M.P. Shaskolskaya: Fundamentals of Crystal Physics, Mir Publishers, Moscow, 1982, pp. 330–39.

    Google Scholar 

  46. J.J. Wortman and R.A. Evans: J. Appl. Phys., 1965, vol. 36, pp. 153–56.

    Article  CAS  Google Scholar 

  47. W. Voigt: Lehrbuch der Kristallphysik, Teubner Verlang, Berlin-Leipzig, 1910.

    Google Scholar 

  48. A. Reuss: Z. Angew. Math. Mech., 1929, vol. 9, pp. 49–58.

    Article  CAS  Google Scholar 

  49. H. Neerfeld: Mitt. K.-Wilh.-Inst. Eisenforschg., 1942, vol. 24, pp. 61–70.

    Google Scholar 

  50. R. Hill: Proc. Phys. Soc., London, Sect. A, 1952, vol. 65, pp. 349–54.

    Article  Google Scholar 

  51. U. Welzel and E. J. Mittemeijer: Z. Kristallogr., 2007, vol. 222, pp. 160–73.

    Article  CAS  Google Scholar 

  52. D. Šimek, R. Kužel, and D. Rafaja: J. Appl. Crystallogr., 2006, vol. 39, pp. 487–501.

    Article  Google Scholar 

  53. N.C. Popa: J. Appl. Crystallogr., 2000, vol. 33, pp. 103–07.

    Article  CAS  Google Scholar 

  54. H. Behnken and V. Hauk: Z. Metallkd. (Int. J. Mater. Res.), 1986, vol. 77, pp. 620–26.

    CAS  Google Scholar 

  55. R.W. Vook and F. Witt: J. Appl. Phys., 1965, vol. 36, pp. 2169–71.

    Article  Google Scholar 

  56. D. Rafaja, L. Havela, R. Kužel, F. Wastin, E. Colineau, and T. Gouder: J. Alloys Compd., 2005, vol. 386, pp. 87–95.

    Article  CAS  Google Scholar 

  57. D. Rafaja, V. Valvoda, R. Kužel, A.J. Perry, and J.R. Treglio: Surf. Coat. Technol., 1996, vol. 86–87, pp. 302–08.

    Article  Google Scholar 

  58. L. Lutterotti: The Maud program, available from: http://www.ing.unitn.it/~maud/

  59. Z. Matěj: MStruct program, available from: http://www.xray.cz/mstruct/

  60. Z. Matěj, R. Kužel, and L. Nichtová: Powder Diffract., 2010, vol. 25, pp. 125–31.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Academy of Sciences of the Czech Republic under Contract Nos. KAN400720701 and IAA101120803 and also as a part of the research plan MSM 0021620834 financed by the Ministry of Education of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kužel.

Additional information

Manuscript submitted March 16, 2010.

Appendix A

Appendix A

Explicit formulas for conversion of the C ij stiffness elastic constants into the S ij compliance constants in the case of the 4/mmm Laue class can be found in Reference 44 or obtained directly from Eq. [4]:

$$ \begin{aligned} S_{11} & = \left( {C_{11} C_{33} - C_{13}^{2} } \right)/\left\{ {\left( {C_{11} - C_{12} } \right)\left[ {\left( {C_{11} + C_{12} } \right)C_{33} - 2C_{13}^{2} } \right]} \right\} \\ S_{12} & = \left( {C_{13}^{2} - C_{12} C_{33} } \right)/\left\{ {\left( {C_{11} - C_{12} } \right)\left[ {\left( {C_{11} + C_{12} } \right)C_{33} - 2C_{13}^{2} } \right]} \right\} \\ S_{33} & = \left( {C_{11} + C_{12} } \right)/\left[ {\left( {C_{11} + C_{12} } \right)C_{33} - 2C_{13}^{2} } \right] \\ S_{13} & = - C_{13} /\left[ {\left( {C_{11} + C_{12} } \right)C_{33} - 2C_{13}^{2} } \right] \\ S_{44} & = 1/C_{44} , \; S_{66} = 1/C_{66} \\ \end{aligned} $$
(A1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matěj, Z., Kužel, R. & Nichtová, L. X-Ray Diffraction Analysis of Residual Stress in Thin Polycrystalline Anatase Films and Elastic Anisotropy of Anatase. Metall Mater Trans A 42, 3323–3332 (2011). https://doi.org/10.1007/s11661-010-0468-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0468-z

Keywords

Navigation