Skip to main content
Log in

Investigation of the lattice defects density and optical characteristics for the anatase phase of titanium dioxide nanocrystalline films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The spin-coating sol-gel method was used and the nanocrystallines of titanium dioxide were deposited on the ordinary glass slide substrates. The films were annealed in air at temperature range between 350 and \(550\,\,^{\circ }\hbox {C}\) and the scanning electron microscopy images of them were analyzed to study the morphology as well as the thickness of films in terms of shape and size distribution behavior of embedded nanoparticles. The behavior of distribution functions was applied; the X-ray diffraction patterns were simulated and compared to the measured \(\hbox {TiO}_2\) peak profiles, using the advanced X-ray diffraction analysis. The volume weighted average crystallite size and the density of linear lattice defects were investigated as a function of annealing temperature. The transmittance spectra of our \(\hbox {TiO}_2\) films were taken by spectrophotometer and the film thicknesses as well as the optical energy gap were calculated. It is found that the film thickness of our samples is in the range of 343–397 nm which is in agreement with the SEM-cross section results. It is also seen that with the elevation of annealing temperature, the energy gap of films decreases. Finally, the correlation between the optical band gap and microstructure parameters (i.e., crystallite size, dislocation density as well as the strain along the z direction) and optical characteristics was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Horn, C.F. Schwerdtfeger, E.P. Meagher, Refinement of the structure of anatase at several temperatures. Zeitsch. Kristallogr. Crystallogr. Mater. 136, 273–281 (1972)

    ADS  Google Scholar 

  2. T.M. Sabine, C.J. Howard, Determination of the oxygen x parameter in Rutile by neutron powder methods. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 38, 701–702 (1982)

    Article  Google Scholar 

  3. E.P. Meagher, G.A. Lager, Polyhedral thermal expansion in the \(\text{ TiO }_2\) polymorphs; refinement of the crystal structures of rutile and brookite at high temperature. Can. Mineral. 17, 77–85 (1979)

    Google Scholar 

  4. T. Fotiou, T.M. Triantis, T. Kaloudis, A. Hiskia, Evaluation of the photocatalytic activity of \(\text{ TiO }_2\) based catalysts for the degradation and mineralization of cyanobacterial toxins and water off-odor compounds under UV-A, solar and visible light. Chem. Eng. J. 261, 17–26 (2015)

    Article  Google Scholar 

  5. V. Scuderi, G. Impellizzeri, L. Romano, M. Scuderi, G. Nicotra, K. Bergum, A. Irrera, B.G. Svensson, V. Privitera, \(\text{ TiO }_2\)-coated nanostructures for dye photo-degradation in water. Nanoscale Res. Lett. 9, 458–464 (2014)

    Article  ADS  Google Scholar 

  6. K. Frohlich, B. Hudec, M. Tapajna, K. Husekova, A. Rosova, P. Elias, J. Aarik, R. Rammula, A. Kasikov, T. Arroval, L. Aarikb, K. Murakamic, M. Rommeld, A.J. Bauer, \(\text{ TiO }_2\)-Based metal-insulator-metal structures for future DRAM storage capacitors. ECS Trans. 50, 79–87 (2013)

    Article  Google Scholar 

  7. M.T. McDowell, M.F. Lichterman, A.I. Carim, R. Liu, S. Hu, B.S. Brunschwig, N.S. Lewis, The influence of structure and processing on the behavior of \(\text{ TiO }_2\) protective layers for stabilization of n-\(\text{ Si }/\text{ TiO }_2/\text{ Ni }\) Photoanodes for Water Oxidation. ACS Appl. Mater. Interfaces 7, 15189–15199 (2015)

    Article  Google Scholar 

  8. J.K. Tsai, W.D. Hsu, T.C. Wu, T.H. Meen, W.J. Chong, Effect of compressed \(\text{ TiO }_2\) nanoparticle thin film thickness on the performance of dye-sensitized solar cells. Nanoscale Res. Lett. 8, 459–464 (2013)

    Article  ADS  Google Scholar 

  9. A. Kusior, A. Wnuk, A. Trenczek-Zajac, K. Zakrzewska, M. Radecka, \(\text{ TiO }_2\) nanostructures for photoelectrochemical cells (PECs). Int. J. Hydrogen Energy 40, 4936–4944 (2015)

    Article  Google Scholar 

  10. T. Ungar, J. Gubicza, Nanocrystalline materials studied by powder diffraction line profile analysis. Zeitsch. Kristallogr. Cryst. Mater. 222, 114–128 (2007)

    ADS  Google Scholar 

  11. V. Soleimanian, M. Saeedi, A. Mokhtari, The influence of heat treatment on the crystallite size, dislocation density, stacking faults probability and optical band gap of nanostructured cadmium sulfide films. Mater. Sci. Semicond. Process. 30, 118–127 (2015)

    Article  Google Scholar 

  12. V. Soleimanian, M. Fallah, S. Aghdaee, Correlation between the microstructure and gas sensing characteristics of nanocrystalline ZnO thin films. J. Mater. Sci. Mater. Electron. 27, 1946–1954 (2016)

    Article  Google Scholar 

  13. D. Yang, R. Yang, J. Zhang, Z. Yang, S.F. Liu, C. Li, High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 8, 3208–3214 (2015)

    Article  Google Scholar 

  14. W.S. Shih, S.J. Young, L.W. Ji, W. Water, H.W. Shiu, TiO2-based thin film transistors with amorphous and anatase channel layer. J. Electrochem. Soc. 158, H609–H611 (2011)

    Article  Google Scholar 

  15. J. Martinez-Garcia, M. Leoni, P. Scardi, A general approach for determining the diffraction contrast factor of straight-line dislocations. Acta Crystallogr. Sect. A Found. Crystallogr. 65, 109–119 (2009)

    Article  ADS  Google Scholar 

  16. M. Leoni, J. Martinez-Garcia, P. Scardi, Dislocation effects in powder diffraction. J. Appl. Crystallogr. 40, 719–724 (2007)

    Article  Google Scholar 

  17. C.Y. Wu, Y.L. Lee, Y.S. Lo, C.J. Lin, C.H. Wu, Thickness-dependent photocatalytic performance of nanocrystalline \(\text{ TiO }_2\) thin films prepared by sol-gel spin coating. Appl. Surf. Sci. 280, 737–744 (2013)

    Article  ADS  Google Scholar 

  18. J.S. Ogorevc, E.T. Pirc, L. Matoh, P. Bukovec, Antibacterial and photodegradative properties of metal doped \(\text{ TiO }_2\) thin films under visible light. Acta Chim. Slov. 59, 264–272 (2012)

    Google Scholar 

  19. C.C. Chang, C.K. Lin, C.C. Chan, C.S. Hsu, C.Y. Chen, Photocatalytic properties of nanocrystalline \(\text{ TiO }_2\) thin film with Ag additions. Thin Solid Films 494, 274–278 (2006)

    Article  ADS  Google Scholar 

  20. E.J. Mittemeijer, P. Scardi, Diffraction Analysis of the Microstructure of Materials (Springer Science & Business Media, Berlin, 2013)

    Google Scholar 

  21. P. Scardi, M. Leoni, Whole powder pattern modelling. Acta Crystallogr. Sect. A Found. Crystallogr. 58, 190–200 (2002)

    Article  Google Scholar 

  22. P. Scardi, M. Leoni, Diffraction line profiles from polydisperse crystalline systems. Acta Crystallogr. Sect. A Found. Crystallogr. 57, 604–613 (2001)

    Article  Google Scholar 

  23. P. Scardi, M. Leoni, Fourier modelling of the anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects. J. Appl. Crystallogr. 32, 671–682 (1999)

    Article  Google Scholar 

  24. M. Wilkens, The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles. Phys. Status Solid. (a) 2, 359–370 (1970)

    Article  ADS  Google Scholar 

  25. N. Popa, The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J. Appl. Crystallogr. 31, 176–180 (1998)

    Article  Google Scholar 

  26. T. Ungar, I. Dragomir, A. Revesz, A. Borbely, The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 32, 992–1002 (1999)

    Article  Google Scholar 

  27. I. Dragomir, T. Ungar, Contrast factors of dislocations in the hexagonal crystal system. J. Appl. Crystallogr. 35, 556–564 (2002)

    Article  Google Scholar 

  28. T. Ungar, H. Mughrabi, D. Ronnpagel, M. Wilkens, X-ray line-broadening study of the dislocation cell structure in deformed [001]-orientated copper single crystals. Acta Metall. 32, 333–342 (1984)

    Article  Google Scholar 

  29. J. Tauc, Optical Properties of Amorphous Semiconductors. Amorphous and Liquid Semiconductors (Springer, Berlin, 1974), pp. 159–220

    Book  Google Scholar 

  30. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 16, 1214–1222 (1983)

    Article  ADS  Google Scholar 

  31. M. Gholami, M. Bahar, M.E. Azim-Araghi, The preparation of \({\rm TiO}_2\) nanoparticles and investigation of its electrical properties as \({\rm CO}_2\) gas sensor at room temperature. Chem. Phys. Lett. 48, 926–9628 (2012)

    Google Scholar 

  32. V. Soleimanian, M. Ghasemi, Influence of oxygen partial pressure on opto-electrical properties, crystallite size and dislocation density of Sn doped \(\text{ In }_2\text{ O }_3\) Nanostructures. J. Electron. Mater. 45, 5395–5403 (2016)

    Article  ADS  Google Scholar 

  33. Y. Kayanuma, Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 38, 9797–9805 (1988)

    Article  ADS  Google Scholar 

  34. L. Peng, L. Fang, X. Yang, Y. Li, Q. Huang, F. Wu, C. Kong, Effect of annealing temperature on the structure and optical properties of In-doped ZnO thin films. J. Alloys Compd. 484, 575–579 (2009)

    Article  Google Scholar 

  35. B.D. Cullity, Elements of X-ray Diffraction (Prentice Hall, Upper Saddle River, 2001), pp. 346–349

    Google Scholar 

  36. T. Ungar, Dislocation model of strain anisotropy. Powder Diffr. 23, 125–132 (2008)

    Article  ADS  Google Scholar 

  37. W.F. Zhang, M.S. Zhang, Z. Yin, Microstrucyures and visible photoluminescence of \({\rm TiO}_2\) nanocrystals. Phys. Status Solid. (A) Appl. Mater. 179, 319–327 (2000)

    Article  ADS  Google Scholar 

  38. S. Kumar, A.K. Ojha, Oxygen vacancy induced photoluminescence properties and enhanced photocatalytic activity of ferromagnetic \({{\rm ZrO}_2}\) nanostructures on methylene blue dye under ultra-violet radiation. J. Alloys Compd. 644, 654–662 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. M. Leoni for providing us with the PM2K software and their permission to use it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishtasb Soleimanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (rar 3 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, S., Soleimanian, V., Mokhtari, A. et al. Investigation of the lattice defects density and optical characteristics for the anatase phase of titanium dioxide nanocrystalline films. Appl. Phys. A 125, 661 (2019). https://doi.org/10.1007/s00339-019-2955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2955-4

Navigation