Skip to main content
Log in

Inverse Problems in Stochastic Modeling of Mixed-Mode Power-Law and Diffusional Creep for Distributed Grain Size

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We seek to develop analytical methods through which the high-temperature deformation behavior of polycrystals can be explained in terms of the statistical distribution of the grain size. Changes in the stress exponent and grain size exponent with the strain rate are related to mixed-mode deformation in which the large grains deform by power-law creep and the small grains by diffusional creep. Two results are obtained. The first is an expression (Eq. [13]) that relates the experimental values of the power-law exponent and the grain size exponent to the values predicted from the classical models for uniform grain size. This equation is independent of the standard deviation of the grain size distribution, the average grain size, and the temperature. In a second result, it is shown that measurements of the change in the stress exponent with the strain rate can be analyzed to estimate the standard deviation and the median value of the grain size. The possible significance of these results is tested against experiments on the superplastic deformation of aluminum, drawn from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Raj and A.K. Ghosh: Acta Metall., 1981, vol. 29, pp. 283–92.

    Article  Google Scholar 

  2. A.K. Ghosh and R. Raj: Acta Metall., 1981, vol. 29, pp. 607–16.

    Article  CAS  Google Scholar 

  3. A.K. Ghosh and R. Raj: Acta Metall., 1986, vol. 34 (3), pp. 447–56.

    Article  Google Scholar 

  4. J. Bai and R. Raj: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2913–19.

    Article  CAS  Google Scholar 

  5. S.L. Phoenix and R. Raj: Acta Metall. Mater., 1992, vol. 40 (11), pp. 2813–28.

    Article  CAS  Google Scholar 

  6. R. Raj, J.S. Kong, D.M. Frangopol, and I.E. Raj: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1471–76.

    Article  CAS  Google Scholar 

  7. A.K. Mukherjee, J.E. Bird, and J.E. Dorn: Trans. ASM, 1969, vol. 62, pp. 155–79.

    CAS  Google Scholar 

  8. R. Raj and M.F. Ashby: Metall. Trans., 1971, vol. 2, p. 1113.

    Article  ADS  Google Scholar 

  9. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, UK, 1985.

    Google Scholar 

  10. D. Lee: Acta Metall., 1969, vol. 17, pp. 1057–69.

    Article  CAS  Google Scholar 

  11. A. Karim and W.A. Backofen: Metall. Trans., 1972, vol. 3, pp. 709–12.

    Article  CAS  Google Scholar 

  12. J. Wadsworth, I.G. Palmer, and D.D. Crocks: Scripta Metall., 1983, vol. 17, pp. 347–52.

    Article  Google Scholar 

  13. R.C. Cook and N.R. Risebrough: Scripta Metall., 1968, vol. 2, pp. 487–89.

    Article  CAS  Google Scholar 

  14. J.H. Schneibel and P.M. Hazzeldine: J. Mater. Sci., 1983, vol. 18, pp. 562–70.

    Article  ADS  Google Scholar 

  15. A.H. Chokshi and T.G. Langdon: Metall. Trans. A, 1988, vol. 19A, pp. 2487–96.

    CAS  ADS  Google Scholar 

  16. I.C. Hsiao and J.C. Huang: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1373–84.

    Article  Google Scholar 

  17. R.M. Cleveland, A.K. Ghosh, and J.R. Bradley: Mater. Sci. Eng., A, 2003, vol. A351, pp. 228–36.

    CAS  Google Scholar 

  18. J.E. Bae and A.K. Ghosh: Acta Mater., 2000, vol. 48, pp. 1207–24.

    Article  CAS  Google Scholar 

  19. B. Wilshire and C.J. Palmer: Scripta Mater., 2002, vol. 46, pp. 483–88.

    Article  CAS  Google Scholar 

  20. M. Herwegh, J.H.P. de Bresser, and J.H. ter Heege: J. Struct. Geol., 2005, vol. 27, pp. 503–21.

    Article  ADS  Google Scholar 

  21. R. Heilbronner and D. Bruhn: J. Struct. Geol., 1998, vol. 20, pp. 695–705.

    Article  ADS  Google Scholar 

  22. J.H. ter Heege, J.H.P. De Bresser, and C.J. Spiers: J. Struct. Geol., 2004, vol. 26, pp. 1693–1705.

    Article  ADS  Google Scholar 

  23. J.N. Wang: J. Struct. Geol., 1994, vol. 16, pp. 961–70.

    Article  ADS  Google Scholar 

  24. J.H. Schneibel, R.L. Coble, and R.M. Cannon: Acta Metall., 1981, vol. 29, pp. 1285–90.

    Article  Google Scholar 

  25. W.S. Tong, J.M. Rickman, H.M. Chan, and M.P. Harmer: J. Mater. Res., 2002, vol. 17 (2), pp. 348–52.

    Article  CAS  ADS  Google Scholar 

  26. T. Morita, R. Mitra, and J.R. Weertman: Mater. Trans., 2004, vol. 45 (2), pp. 502–08.

    Article  CAS  Google Scholar 

  27. M.G. Zelin, K.S. Krasilnikov, R.Z. Valiev, M.W. Grabski, H.S. Yang, and A.K. Mukherjee: Acta Metall. Mater., 1994, vol. 42, pp. 119–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Materials Engineering for Affordable Novel Systems (MEANS) program at Air Force Office of Scientific Research (AFOSR), Arlington, VA, under the direction of Dr. Joan Fuller. Valuable input into the manuscript from Dr. Richard Todd and Professor A.H. Chokshi is acknowledged with pleasure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Raj.

Additional information

Manuscript submitted July 28, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, J., Raj, R. Inverse Problems in Stochastic Modeling of Mixed-Mode Power-Law and Diffusional Creep for Distributed Grain Size. Metall Mater Trans A 41, 308–317 (2010). https://doi.org/10.1007/s11661-009-0120-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0120-y

Keywords

Navigation