Skip to main content
Log in

On grain boundary sliding and diffusional creep

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The problem of sliding at a nonplanar grain boundary is considered in detail. The stress field, and sliding displacement and velocity can be calculated at a boundary with a shape which is periodic in the sliding direction (a wavy or stepped grain boundary): a) when deformation within the crystals which meet at the boundary is purely elastic, b) when diffusional flow of matter from point to point on the boundary is permitted. The results give solutions to the following problems. 1) How much sliding occurs in a polycrystal when neither diffusive flow nor dislocation motion is possible? 2) What is the sliding rate at a wavy or stepped grain boundary when diffusional flow of matter occurs? 3) What is the rate of diffusional creep in a polycrystal in which grain boundaries slide? 4) How is this creep rate affected by grain shape, and grain boundary migration? 5) How does an array of discrete particles influence the sliding rate at a grain boundary and the diffusional creep rate of a polycrystal? The results are compared with published solutions to some of these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Raj: Ph.D. Thesis, Harvard University, Feb. 1971, tobe published.

  2. H. Gleiter, E. Hornbogen, and G. Baro:ActaMet, 1964, vol. 16, p. 1053.

    Google Scholar 

  3. M. F. Ashby:ScriptaMet., 1969, vol. 3, p. 837.

    Article  CAS  Google Scholar 

  4. C. Zener:Phys. Rev., 1941, vol. 60, p. 906.

    Article  Google Scholar 

  5. T. S. Ke.Phys. Rev., 1947, vol. 71, p. 533.

    Article  CAS  Google Scholar 

  6. R. C. Gifkins and K. U. Snowdon:Nature, 1966, vol. 212, p. 916.

    Article  CAS  Google Scholar 

  7. M. F. Ashby, R. Raj, and R. C. Gifkins:ScriptaMet, 1970, vol. 4, p. 737.

    Article  Google Scholar 

  8. C. Herring:J. Appl. Phys., 1950, vol. 21, p. 437.

    Article  Google Scholar 

  9. R. L. Coble:J. Appl Phys., 1963, vol. 34, p. 1679.

    Article  Google Scholar 

  10. L. M. Lifshitz:Soviet Phys. JETP, 1963, vol. 17, p. 909.

    Google Scholar 

  11. G. B. Gibbs:Mem. Sci. Rev. Met., 1965, vol. 62, p. 78l;Mater. Sci. Eng., 1967-68, vol. 2, p. 269.

    Google Scholar 

  12. H. W. Green:J. Appl. Phys., 1970, vol. 41, p. 3899.

    Article  CAS  Google Scholar 

  13. A. H. Gottrell:Mechanical Properties of Matter, p. 202, John Wiley & Sons, New York, 1964.

    Google Scholar 

  14. M. F. Ashby and R. Raj: Harvard University Report No. 2, June 1970.

  15. R. N.Stephens:Met. Rev., 1966, vol. 11, p. 129.

    Google Scholar 

  16. S. P. Timoshenko and J. N. Goodier:Theory of Elasticity, Ch. 3, pp. 35–64, McGraw Hill, New York, 1970.

    Google Scholar 

  17. J. R. Reitz and F. F. Milford:Foundations of Electromagnetic Theory, Ch. 7, Addison Wesley, Reading, Mass., 1964.

    Google Scholar 

  18. R. C. Gifkins:J. Inst. Metals, 1967, vol. 95, p. 373.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student at Harvard University, Cambridge, Mass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, R., Ashby, M.F. On grain boundary sliding and diffusional creep. Metall Trans 2, 1113–1127 (1971). https://doi.org/10.1007/BF02664244

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664244

Keywords

Navigation