Skip to main content
Log in

Gigacycle Fatigue Properties of High-Strength Steels According to Inclusion and ODA Sizes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Gigacycle fatigue tests were conducted for several versions of JIS-SCM440 low-alloy and JIS-SUJ2 bearing steels using 20-kHz ultrasonic fatigue testing to elucidate the relationship of the inclusion size and type to fish-eye fracture properties. The total number of tested specimens was over 200. Most of the specimens revealed Al2O3 or (Cr, Fe)3C inclusion-originating types of fish-eye fractures, while TiN inclusions and the matrix also caused fish-eye fractures in some specimens. Based on these fatigue test results, 109-cycle fatigue limits were estimated according to inclusion size by resorting the obtained data points according to their inclusion sizes at the fish-eye fracture origin. The estimated fatigue limits revealed saturation when the inclusion sizes were smaller than 15 μm, while those fatigue limits depended on the inclusion sizes to the −1/6th power in the case of inclusions above 15 μm in size. The saturation of the 109-cycle fatigue limits was considered to be caused by the effects of the optically dark areas (ODAs). Moreover, the fatigue limits also depended on inclusion type. In comparing the Al2O3 and (Cr, Fe)3C inclusions, the key features causing the difference in the fatigue limits were likely to be bonding between the inclusion and the matrix, i.e., the (Cr, Fe)3C inclusions were tightly bonded to the matrix, unlike the Al2O3 inclusions, although both inclusions were of the hard type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, London, 2002

    Google Scholar 

  2. P.H. Frith: J. Iron Steel Inst., 1955, vol. 180, p. 26

    Google Scholar 

  3. NRIM Fatigue Data Sheet Nos. 2, 3, 4, 8, 9, 10, 16, 17, 24, 25, 26, 59, 60, and 63, National Research Institute for Metals, Tokyo, 1978–1990

  4. Y. Furuya, S. Matsuoka: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3421–31

    Article  Google Scholar 

  5. Y. Murakami, M. Takada, T. Toriyama: Int. J. Fat., 1998, vol. 16(9), pp. 661–67

    Article  Google Scholar 

  6. N.M.A. Eid, P.F. Thomason: Acta Met., 1979, vol. 79, pp. 1239–49

    Article  Google Scholar 

  7. J. Monnot, B. Heritier, and J.Y. Gogne: ASTM STP987, ASTM, Philadelphia, PA, 1988

  8. L.O. Uhrus: Special Report No. 77, Iron and Steel Institute, Washington, USA, 1963, pp. 104–09

  9. D. Brooksbank, K.W. Andrews: J. Iron Steel Inst., 1972, vol. 210, pp. 246–55

    CAS  Google Scholar 

  10. T. Abe, S. Matsuoka: Trans. JSSR, 2001, vol. 46, pp. 19–25 (in Japanese)

    CAS  Google Scholar 

  11. Y. Furuya, S. Matsuoka, T. Abe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3737–44

    Article  CAS  Google Scholar 

  12. Y. Murakami, T. Toriyama, K. Tsubota, and K. Furuyama: ASTM STP1327, ASTM, Philadelphia, PA, 1998

  13. T. Abe, Y. Furuya, S. Matsuoka: Fat. Fract. Eng. Mater. Struct., 2004, vol. 27–2, pp. 159–67

    Article  Google Scholar 

  14. S. Nishijima, K. Kanazawa: Fat. Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 601–07

    Article  CAS  Google Scholar 

  15. Y. Murakami, T. Nomoto, T. Ueda: Fat. Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 581–90

    Article  CAS  Google Scholar 

  16. Y. Murakami, N.N. Yokoyama, J. Nagata: Fat. Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 735–46

    Article  CAS  Google Scholar 

  17. K, Kanazawa, T. Abe, and S. Nishijima: NRIM Fatigue Data Sheet Technical Document No. 9, National Research Institute for Metals, Tokyo, 1995

  18. Y. Furuya, S. Matsuoka, T. Abe, K. Yamaguchi: Scripta Mater., 2002, vol. 46 (2), pp. 157–62

    Article  CAS  Google Scholar 

  19. Y. Furuya, T. Abe, S. Matsuoka: Fat. Fract. Eng. Mater. Struct., 2003, vol. 26, pp. 641–45

    Article  Google Scholar 

  20. W.P. Mason: J. Acoust. Soc. Am, 1956, vol. 28, p. 1207

    Article  Google Scholar 

  21. H. Kuhn and D. Medlin: ASM Handbook, vol. 8, Mechanical Testing and Evaluation, ASM INTERNATIONAL, Materials Park, OH, 2000, pp. 717–29

  22. S.E. Stanzl-Tschegg, H.R. Mayer, E.K. Tschegg: Ultrasonics, 1993, vol. 31, pp. 275–80

    Article  Google Scholar 

  23. T. Wu and C. Bathias: ASTM STP1231, ASTM, Philadelphia, PA, 1994

  24. H. Ishii, T. Yagasaki, H. Akagi: Fat. Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 831–35

    Article  CAS  Google Scholar 

  25. Y. Furuya, S. Matsuoka, T. Abe, K. Yamaguchi: Trans. Jpn. Soc. Mech. Eng., 2002, Ser. A, vol. 68 (667), pp. 477–83 (in Japanese)

    Google Scholar 

  26. Y. Furuya, S. Matsuoka, T. Abe: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2517–26

    Article  CAS  Google Scholar 

  27. E.J. Gumbel: Statistics of Extremes, Columbia University Press, New York, NY, 1957

    Google Scholar 

  28. T. Sawai, K. Kimura, T. Tsuzaki, E. Takeuchi, and S. Matsuoka: Trans. Jpn. Soc. Mech. Eng., 2002, Ser. A, vol. 68(665), pp. 49–56 (in Japanese)

  29. Y. Furuya, S. Matsuoka: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1715–23

    Article  CAS  Google Scholar 

  30. N. Nagashima, S. Matsuoka, and K. Miyahara: Trans. Jpn. Soc. Mech. Eng., 1999, Ser. A, vol. 65(631), pp. 477–82 (in Japanese)

Download references

Acknowledgments

This study was supported by the Industrial Technology Research Grant Program in ‘03 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Furuya.

Additional information

Manuscript submitted December 7, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuya, Y., Hirukawa, H., Kimura, T. et al. Gigacycle Fatigue Properties of High-Strength Steels According to Inclusion and ODA Sizes. Metall Mater Trans A 38, 1722–1730 (2007). https://doi.org/10.1007/s11661-007-9225-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9225-3

Keywords

Navigation