Skip to main content

Very high cycle fatigue crack initiation: investigation of fatigue mechanisms and threshold values for 100Cr6

  • Chapter
  • First Online:
Fatigue of Materials at Very High Numbers of Loading Cycles

Abstract

High-strength steels do not show a classical fatigue limit and failure still occurs far beyond 107 cycles. The fatigue properties in this very high cycle fatigue (VHCF) region are strongly affected by non-metallic inclusions inside the material. The mechanisms responsible for this late failure are not fully understood until now. In the scope of this work the mechanisms of VHCF failure and the connected threshold values are observed in detail. Ultrasonic tension-compression fatigue tests (R = -1) with the high-strength steel 100Cr6 (AISI 52100) were carried out until an ultimate number of cycles of 109. Some additional tests were also performed with artificial surface defects in air and vacuum for comparison. Single step fatigue tests, crack propagation tests and very high cycle stress increase tests are performed to understand the fatigue behaviour for very high cycle failure. By the combination of these tests a threshold for the VHCF by fine granular area (FGA) formation at inclusions can be derived. The results of mechanical testing are completed by investigating the inclusion distribution in tested specimen and the evaluation of harmless inclusions. Comprehensive fracture mechanical investigation for the performed tests enabled the determination of a VHCF threshold value. Microstructural analyses of the crack origin with focused ion beam imaging, transmission electron microscopy and atom probe tomography are used to investigate microstructure after fatigue failure in detail. Thereby the VHCF mechanisms leading to crack initiation are revealed. Finally by combination of fatigue results and microstructural investigations a new model for VHCF crack initiation in high-strength steels is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [1] K. Shiozawa and L. T. Lu: ‘Internal Fatigue Failure Mechanism of High Strength Steels in Gigacycle Regime’, Key Eng. Mat., 2008, 378-379, 65-80.

    Google Scholar 

  • [2] T. Sakai, Y. Sato and N. Oguma: ‘Characteristic S–N properties of high-carbon–chromium-bearing steel under axial loading in long-life fatigue’, Fatigue Fract. Eng. M., 2002, 25, 765-773.

    Google Scholar 

  • [3] Y. Murakami, S. Kodama and S. Konuma: ‘Quantitative evaluation of effects of non-metallic inclusions on fatigue strenght of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture and the size and location of non-metallic inclussions’, Int. J. Fatigue, 1989, 11, 291-298.

    Google Scholar 

  • [4] P. Grad, B. Reuscher, A. Brodyanski, M. Kopnarski and E. Kerscher: ‘Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels’, Scripta Mater., 2012, 67, 838-841.

    Article  CAS  Google Scholar 

  • [4] Y. Murakami and M. Endo: ‘Effects of hardness and Crack Geometries on ΔK of Small Cracks Emanating from Small Defects‘, J. Miller and E. R. d. l. Rios (eds.): ‘The Behaviour of Short Fatigue Cracks’, London, Mechanical Engineering Publications, 1986, pp. 275-293.

    Google Scholar 

  • [6] Y. Murakami, T. Kanezaki and P. Sofronis: ‘Hydrogen embrittlement of high strength steels: Determination of the threshold stress intensity for small cracks nucleating at nonmetallic inclusions’, Eng. Fract. Mech., 2013, 97, 227-243.

    Article  Google Scholar 

  • [7] P. Grad, D. Spriestersbach and E. Kerscher: ‘Influence of the inclusion type on the threshold value of failure in the VHCF-regime of high-strength steels’, Adv. Mater. Research, 2014, 891-892, 339-344.

    Google Scholar 

  • [8] D. Spriestersbach, P. Grad and E. Kerscher: ‘Crack Initiation Mechanisms and Threshold Values of Very High Cycle Fatigue Failure of High Strength Steels’, Proc. ‘XVII International Colloquium on Mechanical Fatigue of Metals’, Verbania, IT, 2014, 84-91.

    Article  CAS  Google Scholar 

  • [9] Y. Murakami, T. Nomoto and T. Ueda: ‘Factors influencing the mechanism of superlong fatigue failure’, Fatigue Fract. Eng. M., 1999, 22, 581-590.

    Google Scholar 

  • [10] Y. Ochi, T. Matsumura, K. Masaki and S. Yoshida: ‘High-cycle rotating bending fatigue property in very long-life regime of high-strength steels’, Fatigue Fract. Eng. M., 2002, 25, 823-830.

    Google Scholar 

  • [11] T. Sakai, H. Harada, and N. Oguma: ‘Crack Initiation Mechanism of Bearing Steel in Very High Cycle Fatigue’, Proc. of ECF-16, 2006.

    Google Scholar 

  • [12] H. Oguma and T. Nakamura: ‘Fatigue crack propagation properties of Ti-6Al-4V in vacuum enviroment’, Int. J. Fatigue, 2013, 50, 89-93.

    Google Scholar 

  • [13] Y. Hong, X. Liu, Z. Lei and C. Sun: ‘The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels’, Int. J. Fatigue, 2016, 89, 108-118.

    Article  CAS  Google Scholar 

  • [14] T. Sakai, N. Oguma and A. Morikawa: ‘Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue’, Fatigue Fract. Eng. M., 2015, 38, 1305-1314.

    Article  Google Scholar 

  • [15] H. Mughrabi and H. W. Höppel: ‘Cyclic deformation and fatigue properties of very fine-grained metals and alloys’, Int. J. Fatigue, 2010, 32, 1413-1427.

    Article  CAS  Google Scholar 

  • [16] K. Hockauf, T. Halle, M. Hockauf, M. F. X. Wagner and T. Lampke: ‘Near-Threshold Fatigue Crack Propagation in an ECAP-Processed Ultrafine-Grained Aluminium Alloy’, Mater. Sci. Forum, 2010, 667-669, 873-878.

    Google Scholar 

  • [17] H.-K. Kim, M.-I. Choi, C.-S. Chung and D. H. Shin: ‘Fatigue properties of ultrafine grained low carbon steel produced by equal channel angular pressing’, Mater. Sci. Eng. A, 2003, 340, 243-250.

    Article  Google Scholar 

  • [18] G. Chai, T. Forsman and F. Gustavsson: ‘Microscopic and nanoscopic study on subsurface damage and fatigue crack initiation during very high cycle fatigue’, Int. J. Fatigue, 2016, 83, 2, 288-292.

    Article  Google Scholar 

  • [19] T. Billaudeau and Y. Nadot: ‘Support for an environmental effect on fatigue mechanisms in the long life regime’, Int. J. Fatigue, 2004, 26, 839-847.

    Article  CAS  Google Scholar 

  • [20] T. Nakamura, H. Oguma and Y. Shinohara: ‘The effect of vacuum-like enviroment inside sub-suface fatigue crack on the formation of ODA fracture surface in high strenght steel’, Proc. Eng., 2010, 2, 2121-2129.

    Google Scholar 

  • [21] J. Petit and C. Sarrazin-Baudoux: ‘An overview on the influence of the atmosphere environment on ultra-high-cycle fatigue and ultra-slow fatigue crack propagation’, Int. J. Fatigue, 2006, 28, 1471-1478.

    Article  CAS  Google Scholar 

  • [22] S. Stanzl-Tschegg and B. Schönbauer: ‘Near-threshold fatigue crack propagation and internal cracks in steel’, Proc. Eng., 2010, 2, 1547-1555.

    Article  Google Scholar 

  • [23] Z. Lei, A. Zhao, J. Xie, C. Sun and Y. Hong: ‘Very high cycle fatigue for GCr15 steel with smooth and hole-defect specimens’, Theor. Appl. Mechanics Letters 2, 2012.

    Article  Google Scholar 

  • [24] D. Spriestersbach, A. Brodyanski, J. Lösch, M. Kopnarski and E. Kerscher: ‘Very high cycle fatigue of bearing steels with artificial defects in vacuum’, Mater. Sci. Tech., 2016, 32, 11, 111-1118.

    Article  CAS  Google Scholar 

  • [25] D. Spriestersbach, A. Brodyanski, J. Lösch, M. Kopnarski, and E. Kerscher: ‘Very high cycle fatigue of high-strength steels: Crack initiation by FGA formation investigated at artificial defects’, Proc. Struct. Int., 2016, 2, 1101-1108.

    Article  Google Scholar 

  • [26] S. Lozano-Perez: ‘A guide on FIB preparation of samples containing stress corrosion crack tips for TEM and atom-probe analysis’, Micron, 2008, 39, 320-328.

    Article  CAS  Google Scholar 

  • [27] R. Wirth: ‘Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale’, Chem. Geol., 2009, 261, 217-229.

    Article  CAS  Google Scholar 

  • [28] J. Monnot, B. Heritier and J. Y. Cogne: ‘Relationship of melting practice, inclusion type, and size with fatigue resistance o bearing steels’, J. J. C. Hoo: ‘Effect of steel manufacturing processes on the quality of bearing steels’, 1988, Philadelphia, ASTM STP 987, 149-165.

    Google Scholar 

  • [29] Y. Furuya, H. Hirukawa, T. Kimura and M. Hayaishi: ‘Gigacycle Fatigue Properties of High-Strength Steels According to Inclusion and ODA Sizes’, Metall. Mater. Trans. A, 2007, 38A, 1722-1730.

    Article  Google Scholar 

  • [30] T. Sakai: ‘Review and Prospects for Current Studies on Very High Cycle Fatigue of Metallic Materials for Machine Structural Use’, J. Sol. Mech. Mater. Eng., 2009, 3, 3, 425-439.

    Article  Google Scholar 

  • [31] L. Xiao, Z. Fan, Z. Jinxiu, Z. Mingxing, K. Mokuang, and G. Zhenqi: ‘Lattice-parameter variation with carbon content of martensite. I. X-ray-diffraction experimental study’, Phys. Rev. B, 1995, 52, 9970.

    Article  CAS  Google Scholar 

  • [32] JCPDS-ICDD, ‘Database of International Center of Diffraction Data’, Version 2.4: PCPDFWIN, 2003.

    Google Scholar 

  • [33] S. S. Babu, E. D. Specht, S. A. David, E. Karapetrova, P. Zschack, M. Peet and H. Bhadeshia: ‘In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite’, Metall. Mater. Trans. A, 2005, 36, 3281-3289.

    Google Scholar 

  • [33] P. Grad: ‘Rissinitiierung und Rissausbreitung im VHCF-Bereich des hochfesten Stahls 100Cr6’, in Schriftenreihe der Arbeitsgruppe Werkstoffprüfung, ed. Kaiserslautern: Materials Testing, TU Kaiserslautern, 2013.

    Google Scholar 

  • [35] W. Song, J. von Appen, P. Choi, R. Dronskowski, D. Raabe and W. Bleck: ‘Atomic-scale investigation of ε and θ precipitates in bainite in 100Cr6 bearing steel by atom probe tomography and ab initio calculations’, Acta Mater., 2013, 61, 7582-7590.

    Article  CAS  Google Scholar 

  • [36] D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge and P. P. Choi: ‘Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces’, Curr. Opin. Solid St. M., 2014, 18, 253-261.

    Article  CAS  Google Scholar 

  • [37] D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig and P. P. Choi: ‘Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite’, Acta Mater., 2013, 61, 6132-6152.

    Article  CAS  Google Scholar 

  • [38] D. Isheim, A. H. Hunter, X. J. Zhang and D. N. Seidman: ‘Nanoscale Analyses of High-Nickel Concentration Martensitic High-Strength Steels’, Metall. Mater. Trans. A, 2013, 44, 3046-3059.

    Google Scholar 

  • [39] X. Sauvage, W. Lefebvre, C. Genevois, S. Ohsaki and K. Hono: ‘Complementary use of transmission electron microscopy and atom probe tomography for the investigation of steels nanostructured by severe plastic deformation’, Scripta Mater., 2009, 60, 1056-1061.

    Article  CAS  Google Scholar 

  • [40] M. M. Abramova, N. A. Enikeev, R. Z. Valiev, A. Etienne, B. Radiguet, Y. Ivanisenko and X. Sauvage: ‘Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel’, Mater. Lett., 2014, 136, 349-352.

    Google Scholar 

  • [41] J. Takahashi, K. Kawakami, J.-i. Hamada and K. Kimura: ‘Direct observation of niobium segregation to dislocations in steel’, Acta Mater., 2016, 107, 415-422.

    Article  CAS  Google Scholar 

  • [42] W. Song, P.-P. Choi, G. Inden, U. Prahl, D. Raabe and W. Bleck: ‘On the Spheroidized Carbide Dissolution and Elemental Partitioning in High Carbon Bearing Steel 100Cr6’, Metall. Mater. Trans. A, 2014, 45, 595-606.

    Article  Google Scholar 

  • [43] I. M. Robertson, P. Sofronis, A. Nagao, M. Martin, S. Wang, D. Gross and K. Nygren: ‘Hydrogen Embrittlement Understood’, Metall. Mater. Trans. B, 2015, 46, 1085-1103.

    Google Scholar 

  • [44] K. Shiozawa, T. Hasegawa, Y. Kashiwagi and L. Lu: ‘Very high cycle fatigue properties of bearing steel under axial loading condition’, Int. J. Fatigue, 2009, 31, 880-888.

    Article  CAS  Google Scholar 

  • [44] C. Ruffing: ‘Schwingfestigkeit und Mikrostruktur von ultrafeinkörnigem C45’ in Schriftenreihe der Arbeitsgruppe Werkstoffprüfung, ed. Kasierslautern, Germany: Materials Testing, TU Kaiserslautern, 2015.

    Google Scholar 

  • [46] X. Sauvage, A. Ganeev, Y. Ivanisenko, N. Enikeev, M. Murashkin and R. Valiev: ‘Grain Boundary Segregation in UFG Alloys Processed by Severe Plastic Deformation’, Adv. Eng. Mater., 2012, 14, 968-974.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard Kerscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spriestersbach, D., Grad, P., Brodyanski, A., Lösch, J., Kopnarski, M., Kerscher, E. (2018). Very high cycle fatigue crack initiation: investigation of fatigue mechanisms and threshold values for 100Cr6. In: Christ, HJ. (eds) Fatigue of Materials at Very High Numbers of Loading Cycles. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-24531-3_9

Download citation

Publish with us

Policies and ethics