Skip to main content

Advertisement

Log in

Gigacycle fatigue properties of a modified-ausformed Si-Mn steel and effects of microstructure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fatigue tests were conducted for modified-ausformed, oil-quenched, and water-quenched versions of a Si-Mn steel (JIS-SMn443) with a chemical composition of 0.42C-0.2Si-1.52Mn (in mass pct). The Si-Mn Steel has an advantage with respect to recycling, since it contains no Cr or Mo, although the steel has disadvantages with respect to tempering resistance and hardenability. Although the tempering resistance was not improved by modified ausforming, the problem of hardenability was minimized, since modified ausforming created fine and uniform martensite. The gigacycle fatigue properties of the Si-Mn steel were improved by the modified ausforming. The low-strength modified-ausformed steel (AF1400) was free of fish-eye fractures and had a fatigue limit of 770 MPa at 109 cycles. In spite of the occurrence of fish-eye fractures, the high-strength modified-ausformed steel (AF2000) achieved a fatigue limit of 830 MPa at 1010 cycles, higher than the 710 MPa limit of the water-quenched steel (QT2000W). The fatigue limits of the oil-quenched steels (QT1400 and QT2000), which contained numerous and large nonuniform structures, could not be determined because of the temperature increase of specimens during the 20 kHz tests. The fracture surfaces revealed optically dark areas (ODAs) even in the modified-ausformed steel when the specimens failed at over 107 cycles, since the steel was partially recrystallized during modified ausforming. The gap of fatigue limit between the AF2000 and QT2000W steels was not entirely explained by the difference of the ODA sizes. Also, the sizes of the nonuniform structures were likely to play an important role in the gigacycle fatigue properties, since the sizes in AF2000 were smaller than those in QT2000W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, London, 2002.

    Google Scholar 

  2. S. Nishijima and K. Kanazawa: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 601–07.

    Article  CAS  Google Scholar 

  3. K.J. Miller and W.J. O’Donnell: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 545–57.

    Article  CAS  Google Scholar 

  4. Y. Murakami, M. Takada, and T. Toriyama: Int. J. Fat., 1998, vol. 16 (9), pp. 661–67.

    Article  Google Scholar 

  5. T. Abe and S. Matsuoka: Trans. JSSR, 2001, vol. 46, pp. 19–25 (in Japanese).

    CAS  Google Scholar 

  6. T. Abe, Y. Furuya, and S. Matsuoka: Tetsu to Hagane, 2003, vol. 89, pp. 711–17 (in Japanese).

    CAS  Google Scholar 

  7. Y. Murakami, T. Nomoto, and T. Ueda: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 581–90.

    Article  CAS  Google Scholar 

  8. Y. Murakami, T. Nomoto, T. Ueda, and Y. Murakami: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 893–902.

    Article  CAS  Google Scholar 

  9. Y. Murakami, T. Nomoto, T. Ueda, and Y. Murakami: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 903–10.

    Article  CAS  Google Scholar 

  10. Y. Murakami, T. Toriyama, K. Tsubota, and K. Furuyama: ASTM STP1327, ASTM, Philadelphia, PA, 1998.

    Google Scholar 

  11. T. Abe, Y. Furuya, and S. Matsuoka: Trans. Jpn. Soc. Mech. Eng., 2001, Ser. A, vol. 67 (664), pp. 1988–95 (in Japanese).

    CAS  Google Scholar 

  12. T. Ohshiro, T. Ikeda, H. Matsuyama, S. Okushima, Y. Oki, and N. Ibaraki: Kobelco Technol. Rev., 1987, vol. 2, pp. 36–40.

    CAS  Google Scholar 

  13. R.A. Bock and W.M. Justusson: Met. Progr., 1968, vol. 94, pp. 107–12.

    Google Scholar 

  14. S. Yusa, K. Tsuzaki, and T. Takahashi: CAMP-ISIJ, 1999, vol. 12, p. 1296.

    Google Scholar 

  15. M. Hayakawa, S. Terasaki, T. Hara, K. Tsuzaki, and S. Matsuoka: Mater. Trans. JIM, 2002, vol. 66, pp. 745–53 (in Japanese).

    CAS  Google Scholar 

  16. Y. Furuya and S. Matsuoka: Metall. Mater. Trans., A, 2002, vol. 33A, pp. 3421–31.

    Article  CAS  Google Scholar 

  17. T. Sawai, Y. Kimura, K. Tsuzaki, E. Takeuchi, and S. Matsuoka: Trans. Jpn. Soc. Mech. Eng., 2002, Ser. A, vol. 68 (665), pp. 49–56 (in Japanese).

    Google Scholar 

  18. F.B. Pickering: Physical Metallurgy and the Design of Steels, Applied Science Publisher, London, 1978, p. 134.

    Google Scholar 

  19. M. Hayakawa, S. Matsuoka, K. Tsuzaki, H. Hanada, and M. Sugisaki: Scripta Mater., 2002, vol. 47, pp. 655–61.

    Article  CAS  Google Scholar 

  20. T. Wu and T. Bathias: ASTM STP1231, ASTM, Philadelphia, PA, 1994.

    Google Scholar 

  21. S.E. Stanzl-Tschegg: Ultrasonic Fatigue—Fatigue 96, Pergamon Press, New York, NY, 1996, pp. 1886–87.

    Google Scholar 

  22. H. Ishii, K. Yamanaka, and K. Tohgo: Mater. Sci. Res. Int. (JSMS), Special Technical Publication I. The Society of Materials Science (JSMS), Kyoto, 2001, pp. 59–64.

    Google Scholar 

  23. Y. Furuya, S. Matsuoka, T. Abe, and K. Yamaguchi: Scripta Mater., 2002, vol. 46 (2), pp. 157–62.

    Article  CAS  Google Scholar 

  24. Y. Furuya, T. Abe, and S. Matsuoka: Fatigue Fract. Eng. Mater. Struct., 2003, vol. 26, pp. 641–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuya, Y., Matsuoka, S. Gigacycle fatigue properties of a modified-ausformed Si-Mn steel and effects of microstructure. Metall Mater Trans A 35, 1715–1723 (2004). https://doi.org/10.1007/s11661-004-0080-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0080-1

Keywords

Navigation