Skip to main content
Log in

Challenges and Perspectives in Target Identification and Mechanism Illustration for Chinese Medicine

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Chinese medicine (CM) is an important resource for human life understanding and discovery of drugs. However, due to the unclear pharmacological mechanism caused by unclear target, research and international promotion of many active components have made little progress in the past decades of years. CM is mainly composed of multi-ingredients with multi-targets. The identification of targets of multiple active components and the weight analysis of multiple targets in a specific pathological environment, that is, the determination of the most important target is the main obstacle to the mechanism clarification and thus hinders its internationalization. In this review, the main approach to target identification and network pharmacology were summarized. And BIBm (Bayesian inference modeling), a powerful method for drug target identification and key pathway determination was introduced. We aim to provide a new scientific basis and ideas for the development and international promotion of new drugs based on CM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016;79:629–661.

    Article  CAS  PubMed  Google Scholar 

  2. Tang F, Zhang QL, Nie Z, et al. Sample preparation for analyzing traditional Chinese medicines. Trac-Trends Analyt Chem 2009;28:1253–1262.

    Article  CAS  Google Scholar 

  3. Zhang W, Huai Y, Miao Z, et al. Systems pharmacology for investigation of the mechanisms of action of traditional Chinese medicine in drug discovery. Front Pharmacol 2019;10:743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Louis JV, Lu Y, Pieschl R, et al. [(3)H]BMT-046091 a potent and selective radioligand to determine AAK1 distribution and target engagement. Neuropharmacology 2017;118:167–174.

    Article  CAS  PubMed  Google Scholar 

  5. Wager TT, Galatsis P, Chandrasekaran RY, et al. Identification and profiling of a selective and brain penetrant radioligand for in vivo target occupancy measurement of casein kinase 1 (CK1) inhibitors. ACS Chem Neurosci 2017;8:1995–2004.

    Article  CAS  PubMed  Google Scholar 

  6. Chang J, Kim Y, Kwon HJ. Advances in identification and validation of protein targets of natural products without chemical modification. Nat Prod Rep 2016;33:719–730.

    Article  CAS  PubMed  Google Scholar 

  7. Pai PP, Mondal S. Applying knowledge of enzyme biochemistry to the prediction of functional sites for Aiding drug discovery. Curr Top Med Chem 2017;17:2401–2421.

    Article  CAS  PubMed  Google Scholar 

  8. Lerman LS. A biochemically specific method for enzyme isolation. Proc Natl Acad Sci USA 1953;39:232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cuatrecasas P, Wilchek M, Anfinsen CB. Selective enzyme purification by affinity chromatography. Proc Natl Acad Sci USA 1968;61:636–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weisenberg RC, Borisy GG, Taylor EW. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry 1968;7:4466–4479.

    Article  CAS  PubMed  Google Scholar 

  11. Sadakane Y, Hatanaka Y. Photochemical fishing approaches for identifying target proteins and elucidating the structure of a ligand-binding region using carbene-generating photoreactive probes. Anal Sci 2006;22:209–218.

    Article  CAS  PubMed  Google Scholar 

  12. Sleno L, Emili A. Proteomic methods for drug target discovery. Curr Opin Chem Biol 2008;12:46–54.

    Article  CAS  PubMed  Google Scholar 

  13. Sato S, Murata A, Shirakawa T, et al. Biochemical target isolation for novices: affinity-based strategies. Chem Biol 2010;17:616–623.

    Article  CAS  PubMed  Google Scholar 

  14. Hage DS, Matsuda R. Affinity chromatography: a historical perspective. Methods Mol Biol 2015;1286:1–19.

    Article  CAS  PubMed  Google Scholar 

  15. Meininger M, Stepath M, Hennig R, et al. Sialic acid-specific affinity chromatography for the separation of erythropoietin glycoforms using serotonin as a ligand. J Chromatogr B Analyt Technol Biomed Life Sci 2016;1012–1013:193–203.

    Article  PubMed  Google Scholar 

  16. Andrys R, Zemanova L, Lenco J, et al. Carbonyl-reducing enzymes as targets of a drug-immobilised affinity carrier. Chem Biol Interact 2015;234:169–177.

    Article  CAS  PubMed  Google Scholar 

  17. Comess KM, McLoughlin SM, Oyer JA, et al. Emerging approaches for the identification of protein targets of small molecules-a practitioners’ perspective. J Med Chem 2018;61:8504–8535.

    Article  CAS  PubMed  Google Scholar 

  18. Mackinnon AL, Taunton J. Target identification by diazirine photo-cross-linking and click chemistry. Curr Protoc Chem Biol 2009;1:55–73.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hatanaka Y, Sadakane Y. Photoaffinity labeling in drug discovery and developments: chemical gateway for entering proteomic frontier. Curr Top Med Chem 2002;2:271–288.

    Article  CAS  PubMed  Google Scholar 

  20. Smith E, Collins I. Photoaffinity labeling in target- and binding-site identification. Future Med Chem 2015;7:159–183.

    Article  CAS  PubMed  Google Scholar 

  21. Woll KA, Dailey WP, Eckenhoff RG. Identification of general anesthetic target protein-binding sites by photoaffinity labeling and mass spectrometry. Methods Enzymol 2018;602:231–246.

    Article  CAS  PubMed  Google Scholar 

  22. Tian Y, Lin Q. Recent development of photo-cross-linkers as tools for biomedical research. Chimia (Aarau) 2018;72:758–763.

    Article  CAS  PubMed  Google Scholar 

  23. Herner A, Marjanovic J, Lewandowski TM, et al. 2-Aryl-5-carboxytetrazole as a new photoaffinity label for drug target identification. J Am Chem Soc 2016;138:14609–14615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang Y, Song H, Chen PR. Genetically encoded photocrosslinkers for identifying and mapping protein-protein interactions in living cells. IUBMB Life 2016;68:879–886.

    Article  CAS  PubMed  Google Scholar 

  25. Chin JW, Cropp TA, Anderson JC, et al. An expanded eukaryotic genetic code. Science 2003;301:964–967.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Q, Parrish AR, Wang L. Expanding the genetic code for biological studies. Chem Biol 2009;16:323–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ngo JT, Tirrell DA. Noncanonical amino acids in the interrogation of cellular protein synthesis. Acc Chem Res 2011;44:677–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019;10:787–807.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sioud M. Phage display libraries: from binders to targeted drug delivery and human therapeutics. Mol Biotechnol 2019;61:286–303.

    Article  CAS  PubMed  Google Scholar 

  30. Mimmi S, Maisano D, Quinto I, et al. Phage display: an overview in context to drug discovery. Trends Pharmacol Sci 2019;40:87–91.

    Article  CAS  PubMed  Google Scholar 

  31. Wang YS, Lin Y, Li H, et al. The identification of molecular target of (20S) ginsenoside Rh2 for its anti-cancer activity. Sci Rep 2017;7:12408.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Derry MM, Somasagara RR, Raina K, et al. Target identification of grape seed extract in colorectal cancer using drug affinity responsive target stability (DARTS) technique: role of endoplasmic reticulum stress response proteins. Curr Cancer Drug Targets 2014;14:323–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robinson TJ, Pai M, Liu JC, et al. High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells: interaction with IQ motif-containing factors. Cell Cycle 2013;12:3013–3024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jafari R, Almqvist H, Axelsson H, et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc 2014;9:2100–2122.

    Article  CAS  PubMed  Google Scholar 

  35. Martinez Molina D, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 2013;341:84–87.

    Article  PubMed  Google Scholar 

  36. Miettinen TP, Bjorklund M. NQO2 is a reactive oxygen species generating off-target for acetaminophen. Mol Pharm 2014;11:4395–4404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tran DT, Adhikari J, Fitzgerald MC. StableIsotope labeling with amino acids in cell culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions. Mol Cell Proteomics 2014;13:1800–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schirle M, Jenkins JL. Identifying compound efficacy targets in phenotypic drug discovery. Drug Discov Today 2016;21:82–89.

    Article  CAS  PubMed  Google Scholar 

  39. Duncan KW, Rioux N, Boriack-Sjodin PA, et al. Structure and property guided design in the identification of PRMT5 tool compound EPZ015666. ACS Med Chem Lett 2016;7:162–166.

    Article  CAS  PubMed  Google Scholar 

  40. Jensen AJ, Martinez Molina D, Lundback T. CETSA: a target engagement assay with potential to transform drug discovery. Future Med Chem 2015;7:975–978.

    Article  CAS  PubMed  Google Scholar 

  41. Savitski MM, Reinhard FBM, Franken H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 2014;346:55.

    Article  CAS  Google Scholar 

  42. West GM, Tucker CL, Xu T, et al. Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements. Proc Natl Acad Sci USA 2010;107:9078–9082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. West GM, Tang L, Fitzgerald MC. Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy. Anal Chem 2008;80:4175–4185.

    Article  CAS  PubMed  Google Scholar 

  44. Strickland EC, Geer MA, Tran DT, et al. Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nat Protoc 2013;8:148–161.

    Article  CAS  PubMed  Google Scholar 

  45. Dearmond PD, Xu Y, Strickland EC, et al. Thermodynamic analysis of protein-ligand interactions in complex biological mixtures using a shotgun proteomics approach. J Proteome Res 2011;10:4948–4958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schirle M, Bantscheff M, Kuster B. Mass spectrometry-based proteomics in preclinical drug discovery. Chem Biol 2012;19:72–84.

    Article  CAS  PubMed  Google Scholar 

  47. Olaru A, Bala C, Jaffrezic-Renault N, et al. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem 2015;45:97–105.

    Article  CAS  PubMed  Google Scholar 

  48. Christopeit T, Carlsen TJ, Helland R, et al. Discovery of novel inhibitor scaffolds against the metallo-beta-lactamase VIM-2 by surface plasmon resonance (SPR) based fragment screening. J Med Chem 2015;58:8671–8682.

    Article  CAS  PubMed  Google Scholar 

  49. Spiro Z, Kovacs IA, Csermely P. Drug-therapy networks and the prediction of novel drug targets. J Biol 2008;7:20.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007;25:197–206.

    Article  CAS  PubMed  Google Scholar 

  51. Altshuler D, Daly M, Kruglyak L. Guilt by association. Nat Genet 2000;26:135–137.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang GB, Li QY, Chen QL, et al. Network pharmacology: a new approach for Chinese herbal medicine research. Evid Based Complement Alternat Med 2013;2013:621423.

    PubMed  PubMed Central  Google Scholar 

  53. Luo TT, Lu Y, Yan SK, et al. Network pharmacology in research of Chinese medicine formula: methodology, application and prospective. Chin J Integr Med 2020;26:72–80.

    Article  CAS  PubMed  Google Scholar 

  54. Yang M, Chen JL, Xu LW, et al. Navigating traditional Chinese medicine network pharmacology and computational tools. Evid Based Complement Alternat Med 2013;2013:731969.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang RZ, Yu SJ, Bai H, et al. TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations. Sci Rep 2017;7:2821.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhao F, Guochun L, Yang Y, et al. A network pharmacology approach to determine active ingredients and rationality of herb combinations of Modified-Simiaowan for treatment of gout. J Ethnopharmacol 2015;168:1–16.

    Article  CAS  PubMed  Google Scholar 

  57. Dai W, Chen HY, Chen CY. A network pharmacology-based approach to investigate the novel TCM formula against Huntington’s disease and validated by support vector machine model. Evid Based Complement Alternat Med 2018;2018:6020197.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang BX, Li J, Gu H, et al. Using bioinformatics approach to explore the pharmacological mechanisms of multiple ingredients in Shuang-Huang-Lian. Sci World J 2015;2015:291680.

    Article  Google Scholar 

  59. Zhou X, Chen S, Liu B, et al. Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support. Artif Intell Med 2010;48:139–152.

    Article  PubMed  Google Scholar 

  60. Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 2014;42:D1091–1097.

    Article  CAS  PubMed  Google Scholar 

  61. Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res 2020;48:D498–D503.

    CAS  PubMed  Google Scholar 

  62. Keshava Prasad TS, Goel R, Kandasamy K, et al. Human protein reference database—2009 update. Nucleic Acids Res 2009;37:767–772.

    Article  Google Scholar 

  63. Oda K, Matsuoka Y, Funahashi A, et al. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 2005;1:2005–2010.

    Article  PubMed Central  Google Scholar 

  64. Rex DAB, Agarwal N, Prasad TSK, et al. A comprehensive pathway map of IL-18-mediated signalling. J Cell Commun Signal 2020;14:257–266.

    Article  CAS  PubMed  Google Scholar 

  65. Xu TR, Vyshemirsky V, Gormand A, et al. Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Sci Signal 2010;3:ra20.

    Article  PubMed  Google Scholar 

  66. Stuchbery R, Kurganovs NJ, McCoy PJ, et al. Target acquired: progress and promise of targeted therapeutics in the treatment of prostate cancer. Curr Cancer Drug Targets 2015;15:394–405.

    Article  CAS  PubMed  Google Scholar 

  67. Arjmand B, Goodarzi P, Mohamadi-Jahani F, et al. Personalized regenerative medicine. Acta Med Iran 2017;55:144–149.

    PubMed  Google Scholar 

  68. Huang S, Kauffman S. How to escape the cancer attractor: rationale and limitations of multi-target drugs. Semin Cancer Biol 2013;23:270–278.

    Article  CAS  PubMed  Google Scholar 

  69. Yuan A, Chen G, Rotimi C. Genetic network analysis by quasi-bayesian method. J Bioinform Comput Biol 2009;7:175–192.

    Article  CAS  PubMed  Google Scholar 

  70. Heinzel S, Berg D, Gasser T, et al. Update of the MDS research criteria for prodromal Parkinson’s disease. Mov Disord 2019;34:1464–1470.

    Article  PubMed  Google Scholar 

  71. Vundavilli H, Datta A, Sima C, et al. Bayesian inference identifies combination therapeutic targets in breast cancer. IEEE Trans Biomed Eng 2019;66:2684–2692.

    Article  PubMed  Google Scholar 

  72. Ban T, Ohue M, Akiyama Y. NRLMFbeta: Beta-distribution-rescored neighborhood regularized logistic matrix factorization for improving the performance of drug-target interaction prediction. Biochem Biophys Rep 2019;18:100615.

    PubMed  PubMed Central  Google Scholar 

  73. Klinger B, Bluthgen N. Reverse engineering gene regulatory networks by modular response analysis—a benchmark. Essays Biochem 2018;62:535–547.

    Article  PubMed  Google Scholar 

  74. Bruggeman FJ, Westerhoff HV, Hoek JB, et al. Modular response analysis of cellular regulatory networks. J Theor Biol 2002;218:507–520.

    Article  CAS  PubMed  Google Scholar 

  75. Santos SD, Verveer PJ, Bastiaens PI. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 2007;9:324–330.

    Article  CAS  PubMed  Google Scholar 

  76. Farcot E, Lavedrine C, Vernoux T. A modular analysis of the auxin signalling network. PLoS One 2015;10:e0122231.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lei L, Cui M, Mi Z. Study on association rule mining in multi-component Chinese medicine research and development for treatment of lung cancer. China J Chin Mater Med 2010;35:2192–2195.

    Google Scholar 

  78. He S, Zhao T, Guo H, et al. Coordinated activation of VEGF/VEGFR-2 and PPARdelta pathways by a multi-component Chinese medicine DHI accelerated recovery from peripheral arterial disease in type 2 diabetic mice. PLoS One 2016;11:e0167305.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang S, Bao YR, Li TJ, et al. Mechanism of Fructus Aurantii Flavonoids promoting gastrointestinal motility: from organic and inorganic endogenous substances combination point of view. Pharmacogn Mag 2017;13:372–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li LC, Kan LD. Traditional Chinese medicine for pulmonary fibrosis therapy: Progress and future prospects. J Ethnopharmacol 2017;198:45–63.

    Article  PubMed  Google Scholar 

  81. Wang ZY, Liu JG, Li H, et al. Pharmacological effects of active components of Chinese herbal medicine in the treatment of Alzheimer’s disease: a review. Am J Chin Med 2016;44:1525–1541.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou C, Liu L, Zhuang J, et al. A systems biology-based approach to uncovering molecular mechanisms underlying effects of traditional Chinese medicine Qingdai in chronic myelogenous leukemia, involving integration of network pharmacology and molecular docking technology. Med Sci Monit 2018;24:4305–4316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hao da C, Xiao PG. Network pharmacology: a Rosetta Stone for traditional Chinese medicine. Drug Dev Res 2014;75:299–312.

    Article  PubMed  Google Scholar 

  84. Yuan H, Ma Q, Cui H, et al. How can synergism of traditional medicines benefit from network pharmacology? Molecules 2017;22:1135–1154.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhao H, Shan Y, Ma Z, et al. A network pharmacology approach to explore active compounds and pharmacological mechanisms of epimedium for treatment of premature ovarian insufficiency. Drug Des Devel Ther 2019;13:2997–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xu TR conceived and designed the study; Guo XX drafted the manuscript and drew the charts; An S and Bao F took care of the writing-revision and editing. All authors have contributed and critically reviewed the manuscript and approved the final version. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Tian-rui Xu.

Additional information

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Supported by the National Nature Science Foundation of China (Nos. 81960659, 81760264, 81960394), Applied Basic Research Key Project of Yunnan (202001AS070024), and Yunnan Applied Basic Research Projects-Union foundation Management System (No. 2018FE001(-294))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Xx., An, S., Bao, F. et al. Challenges and Perspectives in Target Identification and Mechanism Illustration for Chinese Medicine. Chin. J. Integr. Med. 29, 644–654 (2023). https://doi.org/10.1007/s11655-023-3629-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3629-9

Keywords

Navigation