Skip to main content

Advertisement

Log in

Phage Display Libraries: From Binders to Targeted Drug Delivery and Human Therapeutics

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The application of repertoire selection technologies for the study and characterization of tumor heterogeneity is an area of great interest in the field of tumor biology and immunotherapy. Among the most promising approaches, phage display has been successfully used to select peptides and antibody fragments to a variety of different targets, including cancer cells, immune cells and cytokines. Peptides selected from phage display have been used to guide the delivery of lytic peptides, cytotoxic drugs, and nanoparticles to cancer cells with the aim to obtain more efficient and less toxic therapeutics. Additionally, antibodies developed through phage display are being used in the treatment of autoimmune diseases and in some cases metastatic cancers. This review provides a short description of how phage libraries are designed, and highlights the conversion of the isolated binders into human therapeutics and use in targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

CDR:

Complementarity-determining region

EGF:

Epidermal growth factor

Fab:

Antigen-binding fragment

FDA:

Food and drug administration

Ig:

Immunoglobulin

mAb:

monoclonal antibody

NSCLC:

Non-small cell lung cancer

scFv:

Single-chain variable fragment

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

VH:

Variable heavy chain

VL:

Variable light chain

References

  1. Smith, G. P. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315–1317.

    Article  CAS  Google Scholar 

  2. Smith, G. P., & Petrenko, V. A. (1997). Phage display. Chemical Reviews, 97, 391–410.

    Article  CAS  PubMed  Google Scholar 

  3. Nixon, A. E., Sexton, D. J., & Ladner, R. C. (2014). Drugs derived from phage display: From candidate identification to clinical practice. MAbs, 6, 73–85.

    Article  PubMed  Google Scholar 

  4. Kennedy, P. J., Oliveira, C., Granda, P. L., & Samento, B. (2018). Monoclonal antibodies: Technologies for early discovery and engineering. Critical Reviews in Biotechnology, 38, 394–408.

    Article  CAS  PubMed  Google Scholar 

  5. Barbas, C. F. 3rd, Kang, A. S., Lerner, R. A., & Benkovic, S. J. (1991). Assembly of combinatorial antibody libraries on phage surfaces: The gene III site. Proceedings of the National Academy of Sciences of the United States of America, 88, 7978–7982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cherf, G. M., & Cochran, J. R. (2015). Applications of yeast surface display for protein engineering. Methods in Molecular Biology, 1319, 155–175.

    Article  PubMed  Google Scholar 

  7. Yan, X., & Xu, Z. (2006). Ribosome-display technology: Applications for directed evolution of functional proteins. Drug Discovery Today, 11, 911–916.

    Article  CAS  PubMed  Google Scholar 

  8. Ohashi, H., Ishizaka, M., Hirai, N., & Miyamoto-Sato, E. (2013). Efficiency of puromycin-based technologies mediated by release factors and a ribosome recycling factor. Protein Engineering, Design and Selection, 26, 533–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gray, B. P., & Brown, K. C. (2014). Combinatorial peptide libraries: Mining for cell-binding peptides. Chemical Reviews, 114, 1020–1081.

    Article  CAS  PubMed  Google Scholar 

  10. Shadidi, M., & Sioud, M. (2003). Selective targeting of cancer cells using synthetic peptides. Drug Resistance Updates, 6, 363–371.

    Article  CAS  PubMed  Google Scholar 

  11. Frenzel, A., Schirrmann, T., & Hust, M. (2016). Phage display-derived human antibodies in clinical development and therapy. MAbs, 8, 1177–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Straus, S. K., & Bo, H. E. (2018). Filamentous bacteriophage proteins and assembly. Subcellular Biochemistry, 88, 261–279.

    Article  CAS  PubMed  Google Scholar 

  13. Qi, H., Lu, H., Qiu, H. J., Petrenko, V., & Liu, A. (2012). Phagemid vectors for phage display: Properties, characteristics and construction. Journal of Molecular Biology, 417, 129–143.

    Article  CAS  PubMed  Google Scholar 

  14. Enshell-Seijffers, D., Smelyanski, L., & Gershoni, J. M. (2001). The rational design of a ‘type 88’ genetically stable peptide display vector in the filamentous bacteriophage fd. Nucleic Acids Research, 29, E50–E50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., et al. (1991). Multi-subunit proteins on the surface of filamentous phage: Methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Research, 19, 4133–4137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krumpe, L. R., Atkinson, A. J., Smythers, G. W., et al. (2006). T7 lytic phage-displayed peptide libraries exhibit less sequence bias than M13 filamentous phage-displayed peptide libraries. Proteomics, 6, 4210–4222.

    Article  CAS  PubMed  Google Scholar 

  17. Matsumoto, Y., Shindo, Y., Takakusagi, Y., et al. (2011). Screening of a library of T7 phage-displayed peptides identifies alphaC helix in 14-3-3 protein as a CBP501-binding site. Bioorganic & Medicinal Chemistry, 19, 7049–7056.

    Article  CAS  Google Scholar 

  18. Cwirla, S. E., Peters, E. A., Barrett, R. W., & Dower, W. J. (1990). Peptide on phage: A vast library of peptides for identifying ligands. Proceedings of National Academy of Sciences of the United States of America, 87, 6378–6382.

    Article  CAS  Google Scholar 

  19. Sioud, M., Førre, Ø, & Dybwad, A. (1996). Selection of ligands for polyclonal antibodies from random peptide libraries: Potential identification of autoantigens that may trigger B and T cell responses in autoimmune diseases. Clinical Immuology and Immunopathology, 79, 105–114.

    Article  CAS  Google Scholar 

  20. Bonnycastle, L. L., Mehroke, J. S., Rashed, M., Gong, X., & Scott, J. K. (1996). Probing the basis of antibody reactivity with a panel of constrained peptide libraries displayed by filamentous phage. Journal of Molecular Biology, 258(5), 747–762.

    Article  CAS  PubMed  Google Scholar 

  21. Deyle, K., Kong, X.-D., & Heinis, C. (2017). Phage selection of cyclic peptides for application in research and drug development. Accounts of Chemical Research, 50, 1866–1874.

    Article  CAS  PubMed  Google Scholar 

  22. Ladner, R. C. (1995). Constrained peptides as binding entities. TIBTECH, 13, 426–430.

    Article  CAS  Google Scholar 

  23. Teesalu, T., Sugahara, K. N., & Ruoslahti, E. (2012). Mapping of vascular ZIP codes by phage display. Methods in Enzymology, 503, 35–56.

    Article  CAS  PubMed  Google Scholar 

  24. Deramchia, K., Jacobin-Valat, M. J., Vallet, A., et al. (2012). In vivo phage display to identify new human antibody fragments homing to atherosclerotic endothelial and subendothelial tissues. The American Journal of Pathology, 180(6), 2576–2589.

    Article  CAS  PubMed  Google Scholar 

  25. Felici, F., Castagnoli, L., Musacchio, A., Jappelli, R., & Cesareni, G. (1991). Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. Journal of Molecular Biology, 222(2), 301–310.

    Article  CAS  PubMed  Google Scholar 

  26. Fack, F., Hügle-Dörr, B., Song, D., et al. (1997). Epitope mapping by phage display: Random versus gene-fragment libraries. Journal of Immunological Methods, 206, 43–52.

    Article  CAS  PubMed  Google Scholar 

  27. Dybwad, A., Bogen, B., Natvig, J. B., Førre, O., & Sioud, M. (1995). Peptide phage libraries can be an efficient tool for identifying antibody ligands for polyclonal antisera. Clinical & Experimental Immunology, 102, 438–442.

    Article  CAS  Google Scholar 

  28. Sun, Y., Kang, C., Liu, F., et al. (2017). RGD peptide-based target drug delivery of doxorubicin nanomedicine. Drug Development Research, 78, 283–291.

    Article  CAS  PubMed  Google Scholar 

  29. Koivunen, E., Wang, E., & Ruoslahti, E. (1995). Phage libraries displaying cyclic peptides with different ring sizes: Ligands specificities of the RGD-directed integrins. Biotechnology, 13, 265–270.

    CAS  PubMed  Google Scholar 

  30. Arap, W., Pasqualini, R., & Ruoslahti, E. (1998). Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 279, 377–380.

    Article  CAS  PubMed  Google Scholar 

  31. Kibria, G., Hatakeyama, H., Ohga, N., Hida, K., & Harashima, H. (2013). The effect of liposomal size on the targeted delivery of doxorubicin to integrin αvβ3-expressing tumor endothelial cells. Biomaterials, 34, 5617–5627.

    Article  CAS  PubMed  Google Scholar 

  32. Pasqualini, R., Koivunen, E., Kain, R., et al. (2000). Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Research, 60(3), 722–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Laakkonen, P., Porkka, K., Hoffman, J. A., & Ruoslahti, E. (2002). A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nature Medicine, 8(7), 751–755.

    Article  CAS  PubMed  Google Scholar 

  34. Shadidi, M., & Sioud, M. (2003). Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. The FASEB Journal, 17, 256–258.

    Article  CAS  PubMed  Google Scholar 

  35. Lee, S. M., Lee, E. J., Hong, H. Y., et al. (2007). Targeting bladder tumor cells in vivo and in the urine with a peptide identified by phage display. Molecular Cancer Research, 5, 11–19.

    Article  CAS  PubMed  Google Scholar 

  36. Pandya, H., Gibo, D. M., Garg, S., Kridel, S., & Debinski, W. (2012). An interleukin 13 receptor α 2-specific peptide homes to human glioblastoma multiforme xenografts. Neuro-Oncology, 14, 6–18.

    Article  CAS  PubMed  Google Scholar 

  37. Oyama, T., Sykes, K. F., Samli, K. N., et al. (2003). Isolation of lung tumor specific peptides from a random peptide library: Generation of diagnostic and cell-targeting reagents. Cancer Letters, 202(2), 219–230.

    Article  CAS  PubMed  Google Scholar 

  38. McGuire, M. J., Gray, B. P., Li, S., et al. (2014). Identification and characterization of a suite of tumor targeting peptides for non-small cell lung cancer. Scientific Reports, 4, 4480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chang, D. K., Lin, C. T., Wu, C. H., & Wu, H. C. (2009). A novel peptide enhances therapeutic efficacy of liposomal anti-cancer drugs in mice models of human lung cancer. PLoS ONE, 4(1), e4171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chi, Y.-H., Hsiao, J.-K., Lin, M.-H., et al. (2017). Lung cancer-targeting peptides with multi-subtype indication for combinational drug delivery and molecular imaging. Theranostics, 7, 1612–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hong, F. D., & Clayman, G. L. (2000). Isolation of a peptide for targeted drug delivery into human head and neck solid tumors. Cancer Research, 60, 6551–6556.

    CAS  PubMed  Google Scholar 

  42. Jiang, Y.-Q., Wang, H.-R., Li, H.-P., et al. (2006). Targeting of hapeatoma cell and suppression of tumor growth by a novel 12mer peptide fused to superantigen TSST-1. Molecular Medicine, 12, 81–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nishimura, S., Takahashi, S., Kamikatahira, H., et al. (2008). Combinatorial targeting of the macropinocytotic pathway in leukemia and lymphoma cells. Journal of Biological Chemistry, 283, 11752–11762.

    Article  CAS  PubMed  Google Scholar 

  44. Kim, Y., Lillo, A. M., Steiniger, S. C. J., et al. (2006). Targeting heat shock proteins on cancer cells: Selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry, 45, 9434–9444.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, J., Spring, H., & Schwab, M. (2001). Neuroblastoma tumor cell-binding peptides identified through random peptide phage display. Cancer Letters, 171, 153–164.

    Article  CAS  PubMed  Google Scholar 

  46. Zitzmann, S., Mier, W., Schad, A., et al. (2005). A new prostate carcinoma binding peptide (DUP-1) for tumor imaging and therapy. Clinical Cancer Research, 1, 139–146.

    Google Scholar 

  47. Sugahara, K. N., Teesalu, T., Karmali, P. P., et al. (2009). Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 16, 510–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Karasseva, N. G., Glinsky, V. V., Chen, N. X., Komatireddy, R., & Quinn, T. P. (2002). Identification and characterization of peptides that bind human ErbB-2 selected from a bacteriophage display library. Journal of Protein Chemistry, 21, 287–296.

    Article  CAS  PubMed  Google Scholar 

  49. Li, Z., Zhao, R., Wu, X., et al. (2005). Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. The FASEB Journal, 19, 1978–1985.

    Article  CAS  PubMed  Google Scholar 

  50. Qin, X., Wan, Y., Li, M., et al. (2007). Identification of a novel peptide ligand of human vascular endothelia growth factor receptor 3 for targeted tumour diagnosis and therapy. Journal of Biochemistry, 142, 79–85.

    Article  CAS  PubMed  Google Scholar 

  51. Koivunen, E., Arap, W., Valtanen, H., et al. (1999). Tumor targeting with a selective gelatinase inhibitor. Nature Biotechnology, 17(8), 768–774.

    Article  CAS  PubMed  Google Scholar 

  52. Umlauf, B. J., Mercedes, J. S., Chung, C. Y., & Brown, K. C. (2014). Identification of a novel lysosomal trafficking peptide using phage display biopanning coupled with endocytic selection pressure. Bioconjugate Chemistry, 25(10), 1829–1837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jubb, A. M., Strickland, L. A., Liu, S. D., et al. (2012). Neuropilin-1 expression in cancer and development. The Journal of Pathology, 226, 50–60.

    Article  CAS  PubMed  Google Scholar 

  54. Li, Z. J., Wu, W. K., Ng, S. S., et al. (2010). A novel peptide specifically targeting the vasculature of orthotopic colorectal cancer for imaging detection and drug delivery. Journal of Controlled Release, 148, 292–302.

    Article  CAS  PubMed  Google Scholar 

  55. Nohara, S., Kato, K., Fujiwara, D., et al. (2016). Aminopeptidase N (APN/CD13) as a target molecule for scirrhous gastric cancer. Clinics and Research in Hepatology and Gastroenterology, 40, 494–503.

    Article  CAS  PubMed  Google Scholar 

  56. Pastorino, F., Brignole, C., Marimpietri, D., et al. (2003). Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Research, 63(21), 7400–7409.

    CAS  PubMed  Google Scholar 

  57. Herringson, T. P., & Altin, J. G. (2011). Effective tumor targeting and enhanced anti-tumor effect of liposomes engrafted with peptides specific for tumor lymphatics and vasculature. International Journal of Pharmaceutics, 411(1–2), 206–214.

    Article  CAS  PubMed  Google Scholar 

  58. Karmali, P. P., Kotamraju, V. R., Kastantin, M., et al. (2009). Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomedicine, 5, 73–82.

    Article  CAS  PubMed  Google Scholar 

  59. Jung, H. K., Kim, S., Park, R. W., et al. (2016). Bladder tumor-targeted delivery of pro-apoptotic peptide for cancer therapy. Journal of Controlled Release, 235, 259–267.

    Article  CAS  PubMed  Google Scholar 

  60. Leuschner, C., & Hansel, W. (2004). Membrane disrupting lytic peptides for cancer treatments. Current Pharmaceutical Design, 10, 2299–2310.

    Article  CAS  PubMed  Google Scholar 

  61. Sioud, M., Skorstad, G., Mobergslien, A., & Sæbøe-Larssen, S. (2013). A novel peptide carrier for efficient targeting of antigens and nucleic acids to dendritic cells. The FASEB Journal, 27, 3272–3283.

    Article  CAS  PubMed  Google Scholar 

  62. Neo, S. H., Lew, Q. J., Koh, S. M., et al. (2016). Use of a novel cytotoxic HEXIM1 peptide in the directed breast cancer therapy. Oncotarget, 7, 5483–5494.

    Article  PubMed  Google Scholar 

  63. Wang, X. F., Birringer, M., Dong, L. F., et al. (2007). A peptide conjugate of vitamin E succinate targets breast cancer cells with high ErbB2 expression. Cancer Research, 67, 3337–3344.

    Article  CAS  PubMed  Google Scholar 

  64. Luo, H., Yang, J., Jin, H., et al. (2011). Tetrameric far-red fluorescent protein as a scaffold to assemble an octavalent peptide nanoprobe for enhanced tumor targeting and intracellular uptake in vivo. The FASEB Journal, 25, 1–9.

    Article  CAS  Google Scholar 

  65. Moreno, M., Zurita, E., & Giralt, E. (2014). Delivering wasp venom for cancer therapy. Journal of Controlled Release, 182, 13–21.

    Article  CAS  PubMed  Google Scholar 

  66. Sioud, M., & Mobergslien, A. (2012). Selective killing of cancer cells by peptide-targeted delivery of an anti-microbial peptide. Biochemistry Pharmacology, 84, 1123–1132.

    Article  CAS  Google Scholar 

  67. Koller, C. M., Kim, Y., & Schmidt-Wolf, I. G. (2013). Targeting renal cancer with a combination of WNT inhibitors and a bi-functional peptide. Anticancer Research, 33, 2435–2440.

    CAS  PubMed  Google Scholar 

  68. Sigismund, S., Avanzato, D., & Lanzetti, L. (2018). Emerging functions of the EGFR in cancer. Molecular Oncology, 12(1), 3–20.

    Article  PubMed  Google Scholar 

  69. Song, S., Liu, D., Peng, J., et al. (2008). Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. International Journal of Pharmaceutics, 363, 155–161.

    Article  CAS  PubMed  Google Scholar 

  70. Kohno, M., Horibe, T., Haramoto, M., et al. (2011). A novel hybrid peptide targeting EGFR-expressing cancers. European Journal of Cancer, 47, 773–783.

    Article  CAS  PubMed  Google Scholar 

  71. Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology, 69(Suppl 3), 4–10.

    Article  CAS  PubMed  Google Scholar 

  72. Shay, G., Lynch, C. C., & Fingleton, B. (2015). Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biology, 44–46, 200–206.

    Article  CAS  PubMed  Google Scholar 

  73. Medina, O. P., Söderlund, T., Laakkonen, L. J., et al. (2001). Binding of novel peptide inhibitors of type IV collagenases to phospholipid membranes and use in liposome targeting to tumor cells in vitro. Cancer Research, 61(10), 3978–3985.

    CAS  PubMed  Google Scholar 

  74. Mäkelä, A. R., Enbäck, J., Laakkonen, J. P., et al. (2008). Tumor targeting of baculovirus displaying a lymphatic homing peptide. The Journal of Gene Medicine, 10, 1019–1031.

    Article  CAS  PubMed  Google Scholar 

  75. Osuka, S., & Van Meir, E. G. (2017). Overcoming therapeutic resistance in glioblastoma: The way forward. The Journal of Clinical Investigation, 127(2), 415–426.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics. CA: A Cancer Journal of Clinicians, 66, 7–30.

    Google Scholar 

  77. App, C., Knop, J., Huff, T., et al. (2014). Peptide labeling with photoactivatable trifunctional cadaverine derivative and identification of interacting partners by biotin transfer. Analytical Biochemistry, 456, 14–21.

    Article  CAS  PubMed  Google Scholar 

  78. Bhogal, M. S., Lanyon-Hogg, T., Johnston, K. A., Warriner, S. L., & Baker, A. (2016). Covalent label transfer between peroxisomal importomer components reveals export-driven import interactions. Journal of Biological Chemistry, 291, 2460–2468.

    Article  CAS  PubMed  Google Scholar 

  79. Otvos, L. Jr., & Wade, J. D. (2014). Current challenges in peptide-based drug discovery. Frontiers in Chemistry, 2, 62.

    PubMed  PubMed Central  Google Scholar 

  80. Katsara, T., Selios, T., Deraos, S., et al. (2006). Round and round we go: Cyclic peptides in disease. Current Medicinal Chemistry, 13, 2221–2232.

    Article  CAS  PubMed  Google Scholar 

  81. Li, S., McGuire, M. J., Lin, M., et al. (2009). Synthesis and characterization of a high-affinity αvβ6-specific ligand for in vitro and in vivo applications. Molecular Cancer Therapeutics, 8, 1239–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Erbas, B., & Tuncel, M. (2016). Renal function assessment during peptide receptor radionuclide therapy. Seminars in Nuclear Medicine, 6, 462–478.

    Article  Google Scholar 

  83. Mero, A., Clementi, C., Veronese, F. M., & Pasut, G. (2011). Covalent conjugation of poly(ethylene glycol) to proteins and peptides: Strategies and methods. Methods in Molecular Biology, 751, 95–129.

    Article  CAS  PubMed  Google Scholar 

  84. Ehrlich, G. K., Michel, H., Truitt, T., et al. (2013). Preparation and characterization of albumin conjugates of a truncated peptide YY analogue for half-life extension. Bioconjugate Chemistry, 24, 2015–2024.

    Article  CAS  PubMed  Google Scholar 

  85. Roopenian, D. C., & Akilesh, S. (2007). FcRn: The neonatal Fc receptor comes of age. Nature Reviews Immunology, 7, 715–725.

    Article  CAS  PubMed  Google Scholar 

  86. Unverdorben, F., Richter, F., Hurt, M., et al. (2015). Pharmacokinetic properties of IgG and various Fc fusion proteins in mice. MAbs, 8, 120–128.

    Article  CAS  PubMed Central  Google Scholar 

  87. Strohl, W. R. (2015). Fusion proteins for half-life extension of biologics as a strategy to make biobeters. BioDrugs, 29, 215–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sioud, M., Westby, P., Olsen, J. K., & Mobergslien, A. (2015). Generation of new peptide-Fc fusion proteins that mediate antibody-dependent cellular cytotoxicity against different types of cancer cells. Molecular Therapy-Methods & Clinical Development, 4, 2:e15043.

    Article  CAS  Google Scholar 

  89. Mobergslien, A., Peng, Q., Vasovic, V., & Sioud, M. (2016). Cancer cell-binding peptide fused Fc domain activates immune effector cells and blocks tumor growth. Oncotarget, 15, 75940–75953.

    Google Scholar 

  90. Qin, H., Lerman, B., Sakamaki, I., et al. (2014). Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice. Nature Medicine, 20, 676–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tracy, D., Klareskog, L., Sasso, E. H., Salfeld, J. G., & Tak, P. P. (2008). Tumour necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacology & Therapeutics, 117, 244–279.

    Article  CAS  Google Scholar 

  92. Klareskog, L., van der Heijde, D., de Jager, J. P., et al. (2004). Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: Double-blind randomised controlled trial. The Lancet, 363, 675–681.

    Article  CAS  Google Scholar 

  93. Molineux, G., & Newland, A. (2010). Development of romiplostim for the treatment of patients with chronic immune thrombocytopenia: From bench to bedside. British Journal of Haematology, 150, 9–20.

    CAS  PubMed  Google Scholar 

  94. Herbst, R. S., Hong, D., Chap, L., et al. (2009). Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. Journal of Clinical Oncology, 27, 3557–3565.

    Article  CAS  PubMed  Google Scholar 

  95. Karlan, B. Y., Oza, A. M., Richardson, G. E., et al. (2012). Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. Journal of Clinical Oncology, 30, 362–371.

    Article  CAS  PubMed  Google Scholar 

  96. McCafferty, J., Griffiths, A. D., Winter, G., & Chiswell, D. J. (1990). Phage antibodies: Filamentous phage displaying antibody variable domains. Nature, 348, 552–554.

    Article  CAS  Google Scholar 

  97. Alt, F. W., Yancopoulos, G. D., Blackwell, T. K., et al. (1984). Ordered rearrangement of immunoglobulin heavy chain variable region segments. The EMBO Journal, 3, 1209–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tonegawa, S. (1983). Somatic generation of antibody diversity. Nature, 302, 575–581.

    Article  CAS  Google Scholar 

  99. Köhler, G., & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495–497.

    Article  PubMed  Google Scholar 

  100. Tjandra, J. J., Ramadi, L., & McKenzie, I. C. (1990). Development of human anti-murine antibody (HAMA) response in patients. Immunology and Cell Biology, 68, 367–375.

    Article  PubMed  Google Scholar 

  101. He, X. Y., Xu, Z., Melrose, J., et al. (1998). Humanization and pharmacokinetics of a monoclonal antibody with specificity for both E- and P-selectin. The Journal of Immunology, 160, 1029–1035.

    CAS  PubMed  Google Scholar 

  102. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., et al. (1991). By-passing immunization: Human antibodies from V-gene libraries displayed on phage. Journal of Molecular Biology, 222, 581–597.

    Article  CAS  PubMed  Google Scholar 

  103. Lerner, R. (2016). Combinatorial antibody libraries: New advances, new immunological insights. Nature Reviews Immunology, 16, 498–508.

    Article  CAS  PubMed  Google Scholar 

  104. Winter, G., Griffiths, A. D., Hawkins, R. E., & Hoogenboom, H. R. (1994). Making antibodies by phage display technology. Annual Review of Immunology, 12, 433–455.

    Article  CAS  PubMed  Google Scholar 

  105. Hammers, C. M., & Stanley, J. R. (2014). Antibody phage display: Technique and applications. The Journal of Investigative Dermatology, 134, 1–5.

    Article  CAS  PubMed  Google Scholar 

  106. Unkauf, T., Miethe, S., Fühner, V., et al. (2016). Generation of recombinant antibodies against toxins and viruses by phage display for diagnostics and therapy. Advances in Experimental Medicine and Biology, 917, 55–76.

    Article  CAS  PubMed  Google Scholar 

  107. Hoogenboom, H. R. (2005). Selecting and screening recombinant antibody libraries. Nature Biotechnology, 23, 1105–1116.

    Article  CAS  PubMed  Google Scholar 

  108. Wu, H., Beuerlein, G., Nie, Y., et al. (1998). Stepwise in vitro affinity maturation of vitaxin, an alpha v beta 3-specific humanized mAb. Proceedings of the National Academy of Sciences of the United States of America, 95, 6037–6042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ho, M., Kreitman, R. J., Onda, M., & Pastan, I. (2005). In vitro antibody evolution targeting germline host spots to increase activity of an anti-CD22 immunotoxin. Journal of Biological Chemistry, 280, 607–617.

    Article  CAS  PubMed  Google Scholar 

  110. Beerli, R. R., & Rader, C. (2010). Mining human antibody repertoires. MAbs, 2, 365–378.

    Article  PubMed  Google Scholar 

  111. Ohlin, M., & Borrebaeck, C. A. (1996). Characterization of human antibody repertoire following active immune responses in vivo. Molecular Immunology, 33, 583–592.

    Article  CAS  PubMed  Google Scholar 

  112. Graus, Y. E., de Baets, M. H., Parren, P. W., et al. (1997). Human anti-nicotinic acelylcholine receptor recombinant Fab fragments isolated from thymus-derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies. The Journal of Immunology, 158(4), 1919–1929.

    CAS  PubMed  Google Scholar 

  113. Rahumatullah, A., Ahmad, A., Noordin, R., & Lim, T. S. (2015). Delineation of BmSXP antibody V-gene usage from a lymphatic filariasis based immune scFv antibody library. Molecular Immunology, 67(2 Pt B):512–523. https://doi.org/10.1016/j.molimm.2015.07.040.

    Article  CAS  PubMed  Google Scholar 

  114. Hamidon, N. H., Suraiya, S., Sarmiento, M. E., et al. (2018). Immune TB antibody phage display library as a tool To study B cell immunity in TB infections. Applied Biochemistry and Biotechnology, 184(3), 852–868. https://doi.org/10.1007/s12010-017-2582-5.

    Article  CAS  PubMed  Google Scholar 

  115. Scott, A., Walper, B., Lee, P. S., Anderson, G. P., & Goldman, E. R. (2013). Selection and characterization of single domain antibodies specific for Bacillus anthracis spore proteins. Antibodies, 2, 152–167.

    Article  CAS  Google Scholar 

  116. Knappik, A., Ge, L., Honegger, A., et al. (2000). Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. Journal of Molecular Biology, 296(1), 57–86.

    Article  CAS  PubMed  Google Scholar 

  117. Tiller, T., Schuster, I., Deppe, D., et al. (2013). A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs, 5(3), 445–470.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Barbas, C. F., Bain, J. D., Hoekstra, D. M., & Lerner, R. (1992). Semi synthetic combinatorial libraries: A chemical solution to the diversity problem. Proceedings of National Academy of Sciences of the United States of America, 89, 4457–4461.

    Article  CAS  Google Scholar 

  119. Benhar, I. (2007). Design of synthetic antibody libraries. Expert Opinion on Biological Therapy, 7, 763–779.

    Article  CAS  PubMed  Google Scholar 

  120. Hoogenboom, H. R., & Winter, G. (1992). By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. Journal of Molecular Biology, 227, 3–8.

    Article  Google Scholar 

  121. Beck, A., Wurch, T., Bailly, C., & Corvaia, N. (2010). Strategies and challenges for the next generation of therapeutic antibodies. Nature Review Immunology, 10(5), 345–352.

    Article  CAS  Google Scholar 

  122. Beck, A., & Reichert, J. M. (2012). Marketing approval of mogamulizumab: A triumph for glycol-engineering. MAbs, 4, 419–425.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lee, C. C., Perchiacca, J. M., & Tessier, P. M. (2013). Toward aggregation-resistant antibodies by design. Trends in Biotechnology, 31, 612–620.

    Article  CAS  PubMed  Google Scholar 

  124. Roy, A., Nair, S., Sen, N., Soni, N., & Maddhusudhan, M. S. (2017). In silico methods for design of biological therapeutics. Methods, 131, 33–65.

    Article  CAS  PubMed  Google Scholar 

  125. Kiyoshi, M., Caaveiro, J. M., Miura, E., et al. (2014). Affinity improvement of a therapeutic antibody by structure-based computational design: Generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex. PLoS ONE, 9(1), e87099. https://doi.org/10.1371/journal.pone.0087099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lippow, S. M., Wittrup, K. D., & Tidor, B. (2007). Computational design of antibody-affinity improvement beyond in vivo maturation. Nature Biotechnology, 25(10), 1171–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Morse, R. J., & Maus, M. V. (2016). Bispecific antibodies and CARs: Generalized immunotherapeutics harnessing T cell redirection. Current Opinion in Immunology, 40, 24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Alibakhshi, A., Abarghooi Kahaki, F., Ahangarzadeh, S., et al. (2017). Targeted cancer therapy through antibody fragments-decorated nanomedicines. Journal of Controlled Release, 268, 323–334.

    Article  CAS  PubMed  Google Scholar 

  129. Green, L. L. (1999). Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. Journal of Immunological Methods, 231, 11–23.

    Article  CAS  PubMed  Google Scholar 

  130. Halpern, W. G., Lappin, P., Zanardi, T., et al. (2006). Chronic administration of belimumab, a BLyS antagonist, decreases tissue and peripheral blood B-lymphocyte populations in cynomolgus monkeys: Pharmacokinetics, pharmacodynamics, and toxicologic effects. Toxicological Sciences, 91, 586–599.

    Article  CAS  PubMed  Google Scholar 

  131. Mazumdar, S. (2009). Raxibacumab. MAbS 1, 531–538.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Steinbrook, R. (2006). The price of sight—ranibizumab, bevacizumab, and the treatment of macular degeneration. New England Journal of Medicine, 355, 1409–1412.

    Article  CAS  PubMed  Google Scholar 

  133. Spratlin, J. L., Cohen, R. B., Eadens, M., et al. (2010). Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. Journal of Clinical Oncology, 28, 780–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. de Haard, H. J., van Neer, N., Reurs, A., et al. (1999). A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. Journal of Molecular Chemistry, 274, 18218–18230.

    Google Scholar 

  135. Hotte, S. J., Hirte, H. W., et al. (2008). A phase 1 study of mapatumumab in patients with advanced solid malignacies. Clinical Cancer Research, 14, 3450–3455.

    Article  CAS  PubMed  Google Scholar 

  136. Weickhardt, A., Doebele, R., Oton, A., et al. (2012). A phase I/II study of erlotinib in combination with the anti-insulin-like growth factor-1 receptor monoclonal antibody IMC-A12 (cixutumumab) in patients with advanced non-small cell lung cancer. Journal of Thoracic Oncology, 7, 419–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Adams, C., Totpal, K., Lawrence, D., et al. (2008). Structural and functional analysis of the interaction between the agonistic monoclonal antibody Apomab and the proapoptotic receptor DR5. Cell Death and Differentiation, 15(4), 751–761.

    Article  CAS  PubMed  Google Scholar 

  138. Kaymakcalan, Z., Sakorafas, P., Bose, S., et al. (2009). Comparisons of affinities, activities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clinical Immunology, 131, 308–316.

    Article  CAS  PubMed  Google Scholar 

  139. Welch, B. (2008). Adalimumab (Humira) for the treatment of rheumatoid arthritis. American Family Physician, 78, 1406–1408.

    Google Scholar 

  140. Mackay, F., & Browning, J. L. (2002). BAFF: A fundamental survival factor for B cells. Nature Reviews Immunology, 2, 465–475.

    Article  CAS  PubMed  Google Scholar 

  141. Stohl, W. (2017). Inhibition of B cell activating factor (BAFF) in the management of systemic lupus erythematosus (SLE). Expert Review in Clinical Immunology, 13, 623–633.

    Article  CAS  PubMed  Google Scholar 

  142. Witsch, E., Sela, M., & Yarden, Y. (2010). Roles for growth factors in cancer progression. Physiology, 25, 85–101.

    Article  CAS  PubMed  Google Scholar 

  143. McMahon, G. (2000). VEGF receptor signaling in tumor angiogenesis. The Oncologist, 5(Suppl 1), 3–10.

    Article  CAS  PubMed  Google Scholar 

  144. Chen, Y., Wiesmann, C., Fuh, G., et al. (1999). Selection and analysis of an optimized anti VEGF antibody: Crystal structure of an affinity-matured Fab in complex with antigen. Journal of Molecular Biology, 293, 865–881.

    Article  CAS  PubMed  Google Scholar 

  145. Oude Munnink, T. H., Arjaans, M. E., Timmer-Bosscha, H., et al. (2011). PET with the 89Zr-labeled transforming growth factor-beta antibody fresolimumab in tumor models. Journal of Nuclear Medicine, 52, 2001–2008.

    Article  CAS  PubMed  Google Scholar 

  146. Mérino, D., Lalaoui, N., Morizot, A., Solary, E., & Micheau, O. (2007). TRAIL in cancer therapy: Present and future challenges. Expert Opinion on Therapeutic Targets, 11, 1299–1314.

    Article  PubMed  PubMed Central  Google Scholar 

  147. von Karstedt, S., Montinaro, A., & Walczak, H. (2017). Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nature Reviews Cancer, 17, 352–366.

    Article  CAS  Google Scholar 

  148. Liu, S., Moayeri, M., & Leppla, S. H. (2014). Anhrax lethal and edema toxins in anthrax pathogenesis. Trends in Microbiology, 22, 317–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kramer, R. A., Marissen, W. E., Goudsmit, J., et al. (2005). The human antibody repertoire specific for rabies virus glycoproteins as selected from immune libraries. European Journal of Immunology, 35, 2131–2145.

    Article  CAS  PubMed  Google Scholar 

  150. Sioud, M., Westby, P., Vasovic, V., Fløisand, Y., & Peng, Q. (2018). Development of a new high-affinity human antibody with antitumor activity against solid and blood malignancies. The FASEB Journal, 32(9), 5063–5077.

    Article  CAS  PubMed  Google Scholar 

  151. Reichert, J. M. (2017). Antibodies to watch in 2017. MAbs, 9,167–181.

    Article  CAS  PubMed  Google Scholar 

  152. Sioud, M., & Hansen, M. H. (2001). Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. European Journal of Immunology, 31(3), 716–725.

    Article  CAS  PubMed  Google Scholar 

  153. Sioud, M., Hansen, M., & Dybwad, A. (2000). Profiling the immune responses in patient sera with peptide and cDNA display libraries. International Journal of Molecular Medicine, 6(2), 123–128.

    CAS  PubMed  Google Scholar 

  154. Zantow, J., Just, S., Lagkouvardos, I., et al. (2016). Mining gut microbiome oligopeptides by functional metaproteome display. Scientific Reports, 6, 34337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dybwad, A., Førre, O., Natvig, J. B., & Sioud, M. (1995). Structural characterization of peptides that bind synovial fluid antibodies from RA patients: A novel strategy for identification of disease-related epitopes using a random peptide library. Clinical Immunology and Immunopathology, 75, 45–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Norwegian Cancer Society (Grant No. 182593).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouldy Sioud.

Ethics declarations

Conflict of interest

The author has no potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sioud, M. Phage Display Libraries: From Binders to Targeted Drug Delivery and Human Therapeutics. Mol Biotechnol 61, 286–303 (2019). https://doi.org/10.1007/s12033-019-00156-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00156-8

Keywords

Navigation