Skip to main content
Log in

Peraluminous A-type granites formed through synchronous fractionation, magma mixing, mingling, and undercooling: evidence from microgranular enclaves and host Mesoproterozoic Kanigiri granite pluton, Nellore Schist Belt, southeast India

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The field and microstructural features coupled with mineral chemical data from microgranular enclave (ME) and host Mesoproterozoic Kanigiri granite (KG) pluton of Nellore Schist Belt (NSB), Southeastern India, have been documented in order to infer the likely processes responsible for the origin and evolution of ME and host KG magma. The ME and host KG bear the same mineral assemblages barring the KG which does not contain amphibole; however, they are modally disequilibrated. The ME in KG is originated due to multiple intrusions of ME magmas into the crystallizing host KG magma chamber. Field and textural features indicate the dynamic magma flow, mingling, and undercooling of the ME against a relatively cooler surface of host KG magma. The presence of NSB country rock xenoliths and its diffuse boundaries suggest the intrusive relation and marginal assimilation by the intruding KG magma. The occasional cumulate texture in the ME appears to have formed by the accumulation of early-formed minerals that crystallized rapidly in the ME magma globules. The ME shows the magmatically deform features developed due to the flowage and erosion by the subsequent intrusions of ME magma pulses into the crystallizing host KG magma chamber. The ME amphiboles show unusual composition as ferro-edenitic hornblende to potassian-hastingsitic hornblende, that crystallized in the subalkaline-alkaline transition, low fO2(reducing to mildly oxidizing) magma. The unusual extremely low Mg/Mg + Fet = 0.015 (avg.) of ME amphiboles may be related to the changing physico-chemical (P, T, fO2, and H2O) condition of the ME magma or they might have crystallized in equilibrium with more evolved KG magma. The KG (FeOt/MgO = 37.04, avg.) and ME (FeOt/MgO = 77.72, avg.) biotites are siderophyllite, and buffered between QFM and NNO syn-crystallizing in the water undersaturated (H2O ≈ 3.58 wt.% in KG; ≈3.53wt.% in ME), alkaline anorogenic (A-type) host magmas that were emplaced at mid-crustal (4–5 kbar; ~ 17 km) depth. Field, microtextural and mineral chemical evidences suggest that the alkaline KG magma originated from crustal source and evolved through synchronous fractionation, mixing, and mingling with coeval ME magmas in the KG magma chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdel-Rahman AM (1994) Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. J Petrol 35:525–541

    Article  Google Scholar 

  • Adam MSM, Kim T, Song Y-S, Kim Y-S (2019) Occurrence and origin of the zoned microgranular enclaves (MEs) within the Cretaceous granite in Taejongdae, SE Korea. Lithos 324–325:537–550

    Article  Google Scholar 

  • Altherr FF, Holl A, Hegner E, Langer C, Kreuzer H (2000) High potassium, calc-alkaline I-type plutonism in the European variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73

    Article  Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. Amer Miner 80:549–559

    Article  Google Scholar 

  • Anderson JL, Barth AP, Wooden JL, Mazdab F (2008) Thermometers and thermobarometers in granitic systems. Rev Mineral Geochem 69:121–142. https://doi.org/10.2138/rmg.2008.69.4

    Article  Google Scholar 

  • Andersson UB, Eklund O (1994) Cellular plagioclase intergrowths as a result of crystal-magma mixing in the Proterozoic Åland rapakivi batholith. SW Finland Contrib Mineral Petrol 117:124–136. https://doi.org/10.1007/BF00286837

    Article  Google Scholar 

  • Anettsungla Rino V, Kumar S (2018) Redox condition, nature and tectono-magmatic environment of Granitoids and Granite gneisses from the Karbi Anglong Hills, Northeast India: constraints from magnetic susceptibility and biotite geochemistry. J Geol Soc India 91:601–612. https://doi.org/10.1007/s12594-018-0911-0

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Petrol 49(12):2277–2285. https://doi.org/10.1093/petrology/egn068

    Article  Google Scholar 

  • Banerjee DC, Maithani PB, Ranganath N, Jayaram KMV (1983) Rare-metal mineralisation in granitic rocks of Kanigiri area in the Prakasam district, Andhra Pradesh, India. Chem Geol 39:319–334

    Article  Google Scholar 

  • Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626. https://doi.org/10.1016/S0024-4937(98)00085-1

    Article  Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 88:155–177

    Article  Google Scholar 

  • Barbarin B (1991) Enclaves of the Mesozoic calc-alkaline granitoids of the Sierra Nevada Batholith, California. In: Didier J and Barbarin B (Editors), In Enclaves and Granite Petrology, Developments in Petrology. Elsevier, Amsterdam pp 135–153

  • Barbarin B, Didier J (1991) Macroscopic features of mafic microgranular enclaves. In: Didier J, Barbarin B (eds), Enclaves and granite petrology. Elsevier, Amsterdam pp 253–262

  • Barbarin B, Didier J (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Earth Environ Sci Trans R Soc Edinb 83(1–2):145–153. https://doi.org/10.1130/SPE272-p145

    Article  Google Scholar 

  • Barbey P (2009) Layering and schlieren in granitoids: A record of interactions between magma emplacement, crystallization and deformation in growing plutons. Geol Belg 12:109–133

    Google Scholar 

  • Baxter S, Feely M (2002) Magma mixing and mingling textures in granitoids: examples from the Galway granite, Connemara, Ireland. Mineral Petrol 76:63–74

    Article  Google Scholar 

  • Beane RE (1974) Biotites stability in the porphyry copper environment. Econ Geol 69:241–256

    Article  Google Scholar 

  • Bohrson WA, Spera FJ, Ghiorso MS, Brown GA, Creamer JB, Mayfield A (2014) Thermodynamic models for energy-constrained open-system evolution of crustal magma bodies undergoing simultaneous recharge, assimilation and crystallization: the Magma Chamber Simulator. J Petrol 55:1685–1717. https://doi.org/10.1093/petrology/egu036

    Article  Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 97(1–2):1–29. https://doi.org/10.1016/j.lithos.2006.12.007

    Article  Google Scholar 

  • Bonová K, Broská I, Petrík I (2010) Biotite Eierna hora Mountains granitoids (Western Carpathians, Slovakia) and estimation of water contents in granitoid melts. Geol Carpath 61:3–17

    Article  Google Scholar 

  • Bora S, Kumar S (2015) Geochemistry of biotites and host granitoid plutons from the proterozoic Mahakoshal Belt, central India tectonic zone: implication for nature and tectonic setting of magmatism. Intn Geol Rev 57:1686–1706

    Article  Google Scholar 

  • Brown M (1994) The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Sci Rev 36:83–130

    Article  Google Scholar 

  • Brown M (2013) Granite: from genesis to emplacement. Geol Soc Am Bull 125:1079–1113

    Article  Google Scholar 

  • Burkhard DJM (1993) Biotite crystallization temperatures and redox states in granitic rocks as indicator for tectonic setting. Geol Mijnbouw 71:337–349

    Google Scholar 

  • Castro A (1990) Microgranular enclaves of the Quintana granodiorite (Los Pedroches Batholith). Petrogenetic Significance Rev Soc Geol Espana 3:7–21

    Google Scholar 

  • Chappell B (1999) Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46:535–551. https://doi.org/10.1016/S0024-4937(98)00086-3

    Article  Google Scholar 

  • Clarke DB, Clarke GKC (1998) Layered granodiorites at Chebutco Head, South Mountain batholith, Nova Scotia. J Struct Geol 20:1305–1324

    Article  Google Scholar 

  • Clemens JD, Regmi K, Nicholls IA, Weinberg R, Maas R (2016) The Tynong pluton, its mafic synplutonic sheets and igneous microgranular enclaves: the nature of the mantle connection in I-type granitic magmas. Contrib Mineral Petrol 171:17. https://doi.org/10.1007/s00410-016-1251-y

    Article  Google Scholar 

  • Clowe CA, Popp RK, Fritz SJ (1988) Experimental investigation of oxygen fugacity on ferric–ferrous ratios and unit-cell parameters of four natural clinoamphiboles. Am Mineral 73:487–499

    Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80(2):189–200. https://doi.org/10.1007/BF00374895

    Article  Google Scholar 

  • Czamanske GK, Wones DR (1973) Oxidation during magmatic differentiation, Finnmarka complex, Oslo area, Norway: Part 2, the mafic silicates. Jpetrol 14:349–380

    Google Scholar 

  • Das S, Shukla D, Mitra SK (2016) Evidences of inclined transpression at the contact between Vinjamuru group and Udayagiri group of Nellore Schist Belt, Andhra Pradesh, India. J Earth Syst Sci 125:1007–1020

    Article  Google Scholar 

  • De Albuquerque CAR (1973) Geochemistry of biotites from granitic rocks, northern. Portugal Geochim Cosmochim Acta 37:1779–1802

    Article  Google Scholar 

  • Deer W A, Howie R A, and Zussman J (1963) Rock-forming minerals, Sheet Silicates, London, Longman Green and Co., 3: pp 270

  • Dharma Rao CV, Reddy UVB (2007) Petrology and geochemistry of Paleoproterozoic A-type granite at Kanigiri in the Nellore-Khammam Schist Belt, Andhra Pradesh, India. J Asian Earth Sci 30:1–19

    Article  Google Scholar 

  • Dharma Rao CV, Santosh M, Yuan-Bao W (2011) Mesoproterozoic ophiolitic mélange from the SE periphery of the Indian plate: U-Pb zircon ages and tectonic implications. Gond Res 19:384–401

    Article  Google Scholar 

  • Didier J (1984) The problem of enclaves in granitic rocks: a review of recent ideas on their origin. In Xu KQ and Tu GC (Eds.), Proceedings of international symposium on Geology of granites and their metallogenetic relations. Nanjing and Beijing, China: Nanjing University, Science Press, pp 137–144

  • D’Lemos RS (1996) Mixing between granitic and dioritic crystal mushes, Guernsey, Channel Islands. UK Lithos 38(3):233–257. https://doi.org/10.1016/0024-4937(96)00007-2

    Article  Google Scholar 

  • Dobmeier JC, Raith MM (2003) Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. In: Yoshida M, Windley BF, Dasgupta S (ed), Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geol Soc Spec Publ 206:145–168.

  • Dorais MJ, Whitney JA, Roden MF (1990) Origin of mafic enclaves in the Dinkey Creek Pluton, Central Sierra Nevada Batholith, California. J Petrol 31:853–881

    Article  Google Scholar 

  • Douce AEP (1997) Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25(8):743–746. https://doi.org/10.1130/0091-7613(1997)025%3C0743:GOMATG%3E2.3.CO;2

    Article  Google Scholar 

  • Elkins LT, Grove TL (1990) Ternary feldspar experiments and thermodynamic models. Am Min 75:544–559

  • Ellis B S, Neukampf J, Bachmann O, Harris C, Forni F, Magna T, Laurent O and Ulmer P (2022) Biotite as a recorder of an exsolved Li-rich volatile phase in upper-crustal silicic magma reservoirs. https://doi.org/10.1130/G49484.1

  • Foster MD (1960) Interpretation of the composition of trioctahedral micas. US Geol Surv Prof Paper 354:1–49

    Google Scholar 

  • Frost CD, Frost BR (2010) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52:3953

    Google Scholar 

  • Frost C, Frost B, Bell J, Chamberlain K (2002) The relationship between A-type granites and residual magmas from anorthosite: evidence from the northern Sherman batholith, Laramie Mountains, Wyoming, USA. Precamb Res 119(1–4):45–71. https://doi.org/10.1016/S0301-9268(02)00117-1

    Article  Google Scholar 

  • Ghosh D, Das JN, Rao AK, Ray Barman T, Kollapuri VK, Sarkar A (1994) Fission-track and K-Ar dating of pegmatite and associated rocks of Nellore schist belt, Andhra Pradesh: evidence of middle to late Proterozoic events. Ind Mineral 48:95–102

    Google Scholar 

  • Gion AM, Piccoli PM, Candela PA (2022) Characterization of biotite and amphibole compositions in granites. Contrib Mineral Petrol 177:43. https://doi.org/10.1007/s00410-022-01908-7

    Article  Google Scholar 

  • Giret A, Bonin B, Léger JM (1980) Amphibole compositional trends in oversaturated and undersaturated Alkaline Plutonic ring complexes. Canad Mineral 18:481–495

    Google Scholar 

  • Glazner AF (2007) Thermal limitations on incorporation of wall rock into magma. Geology 35:319–322. https://doi.org/10.1130/G23134A.1

    Article  Google Scholar 

  • Glazner AF, Bartley JM, Law BS (2020) Immiscibility and the origin of ladder structures, mafic layering, and schlieren in plutons. Geology 49:86–90. https://doi.org/10.1130/G47634.1

    Article  Google Scholar 

  • Griffiths RW (1986) Thermals in extremely viscous fluids, including the effects of temperature-dependent viscosity. J Fluid Mech 166:115–138

    Article  Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Mu¨ntener O, Gaetani G A, (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533

    Article  Google Scholar 

  • Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci 40:413–439. https://doi.org/10.1146/annurev-earth-042711-105310

    Article  Google Scholar 

  • Gupta JN, Pandey BK, Chabria T, Banerjee DC, Jayaram KMV (1984) Rb-Sr geochronological studies on the granites of Vinukonda and Kanigiri, Prakasam district, A.P. India Precambr Res 26:105–109

    Article  Google Scholar 

  • Hart CJR, Goldfarb RJ, Lewis LL, Mair JL (2004) The northern Cordilleran mid-Cretaceous plutonic province: Ilmenite/magnetite series granitoids and intrusion related mineralisation. Resour Geol 54(3):253–280

    Article  Google Scholar 

  • Healy B, Collins W, Richards S (2004) A hybrid origin for Lachlan S-type granites: the Murrumbidgee Batholith example. Lithos 78:197–216. https://doi.org/10.1016/j.lithos.2004.04.047

    Article  Google Scholar 

  • Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to medium pressure metapelitic biotite: implications for geothermometry and Ti- substitution mechanisms. Amer Miner 90:316–328

    Article  Google Scholar 

  • Hibbard MJ (1995) Petrography to petrogenesis. Prentice Hall, New Jersey, p 575

    Google Scholar 

  • Hidalgo PJ, Rooney TO (2010) Crystal fractionation processes at Baru volcano from the deep to shallow crust. Geochem Geophys 11(12):1–29. https://doi.org/10.1029/2010GC003262

    Article  Google Scholar 

  • Hollister LS, Grissom GC, Peters EK, Stowell HH, Sisson VB (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Amer Miner 72(3–4):231–239

    Google Scholar 

  • Holtz F, Johannes W, Tamic N, Behrens H (2001) Maximum and minimum water contents of granitic melts generated in the crust: are-evaluation and implications. Lithos 56:1–14

    Article  Google Scholar 

  • Hrushikesha H, Prabhakara N, Bhattacharya A (2019) Mesoproterozoic P-T–t–d history in the Vinjamuru domain, Nellore schist belt (SE India), and implications for SE India-East Antarctica correlation. Precamb Res 327:273–295

    Article  Google Scholar 

  • Huang HQ, Li XH, Li WX, Li ZX (2011) Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology 39:903–906. https://doi.org/10.1130/G32080.1

    Article  Google Scholar 

  • Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Min Geol (tokyo) 27:293–305

    Google Scholar 

  • Ishihara S (1979) Lateral variation of magmatic susceptibility of the Japanese granitoids. Chem Pharm Bull 85(5):509–523

    Google Scholar 

  • Ishihara S (1998) Granitoid series and mineralization in the circum-pacific Phanerozoic granitic belts. Resour Geol 48(4):219–224

    Article  Google Scholar 

  • Ishihara S (2004) The redox state of granitoids relative to tectonic setting and earth history: the magnetite–ilmenite series 30 years later. Earth Environ Sci Trans R Soc Edinb 95(1–2):23–33

    Google Scholar 

  • Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminum-in hornblende geo-barometer with application to long Valley caldera (California) volcanic rocks. Geology 17(9):837–841

    Article  Google Scholar 

  • Karimpour MH, Stern CR, Mouradi M (2011) Chemical composition of biotite as a guide to petrogenesis of granitic rocks from Maherabad, Dehnow, Gheshlagh, Khajehmourad and Najmabad, Iran, Iranian. J Crystallography and Mineralogy 18:89–100

    Google Scholar 

  • Kemp AI, Hawkesworth CJ, Paterson BA, Kinny PD (2006) Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439:580–583. https://doi.org/10.1038/nature04505

    Article  Google Scholar 

  • King PL, White AJR, Chappell BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt. Southeastern Australia J Petrol 38(3):371–391. https://doi.org/10.1093/petroj/38.3.371

    Article  Google Scholar 

  • Krishna Reddy K, Ratnakar J, Leelanandam C (1998) A petrochemical study of the Proterozoic alkaline complex of Uppalapadu, Prakasam alkaline province, Andhra Pradesh. J Geol Soc India 53:41–52

    Google Scholar 

  • Kumar SC (1988) Microgranular enclaves in granitoids: agents of magma mixing. J Southeast Asian Earth Sci 2:109–121. https://doi.org/10.1016/0743-9547(88)90022-0

    Article  Google Scholar 

  • Kumar S (1995a) Microstructural evidence of magma quenching inferred from enclaves hosted in the Hodruša Granodiorites, Western Carpathians. Geol Carpath 46:379–382

    Google Scholar 

  • Kumar S (2010a) Mafic to hybrid microgranular enclaves in the granitoids of Ladakh batholith, Northwest Higher Himalaya: implications on calc-alkaline magma chamber processes. J Geol Soc India 76:5–25

    Article  Google Scholar 

  • Kumar S (2010b) Magnetite and ilmenite series granitoids of Ladakh batholith, Northwest Indian Himalaya: implications on redox conditions of subduction zone magmatism. Curr Sci 99(9):1260–1264

    Google Scholar 

  • Kumar S (2014) Magmatic processes: review of some concepts and models. In: Kumar S, Singh RN (eds) Modelling of Magmatic and Allied Processes. Springer, Berlin, pp 1–22

    Chapter  Google Scholar 

  • Kumar S, Pathak M (2009) Magnetic susceptibility and geochemistry of felsic igneous rocks from Western Arunachal Himalaya: Implication on granite series evaluation in orogenic belt. Magmatism, tectonism and mineralization. Macmillan Publishers India Ltd., New Delhi, pp 74–91

    Google Scholar 

  • Kumar S, Pathak M (2010) Mineralogy and geochemistry of biotites from Proterozoic granitoids of western Arunachal Himalaya: evidence of bimodal granite orogeny and tectonic affinity. J Geol Soc India 75:715–730

    Article  Google Scholar 

  • Kumar S, Rino V, Pal AB (2004a) Field evidence of magma mixing from microgranular enclaves hosted in Palaeoproterozoic Malanjkhand granitoids, central India. Gondwana Res 7:539–548. https://doi.org/10.1016/S1342-937X(05)70804-2

    Article  Google Scholar 

  • Kumar S, Rino V, Pal AB (2004b) Typology and geochemistry of microgranular enclaves hosted in Malanjkhand granitoids, central India. J Geol Soc India 64:277–292

    Google Scholar 

  • Kumar S, Pieru T, Rino V (2005a) Evaluation of granitoid-series and magmatic oxidation of Neoproterozoic South Khasi granitoids and their microgranular enclaves, Meghalaya: constraints from magnetic susceptibility and biotite composition. Jour App Geochem 7:175–194

    Google Scholar 

  • Kumar S, Pieru T, Rino V, Lyngdoh BC (2005b) Microgranular enclaves in Neoproterozoic south Khasi granitoids of Meghalaya: field evidences of coeval mafic and felsic magma interaction. J Geol Soc India 65:629–633

    Google Scholar 

  • Kumar G, Kumar S, Mohan MR (2021) Redox series assessment, petrogenetic, and geodynamic appraisal of Neoarchean granites from the Bundelkhand Craton, Central India: constraints from phase petrology and bulk rock geochemistry. Geol J 56(476):1–29

    Google Scholar 

  • Kumar S, Singh BN, Castro A, Pundir S, Panwar KS (2022) Origin and evolution of microgranular enclaves hosted in the Cambrian granitoids of Champawat region, Kumaun Lesser Himalaya. India Himal Geol 43(1B):287–302

    Google Scholar 

  • Kumar S, Singh B N (2006) Microgranular enclaves hosted in Champawat granitoids, Kumaun Lesser Himalaya. In: Saklani, PS (ed) Himalaya (Geological Aspect), Satish Serial Publishing House, Delhi, 4:79–90

  • Kumar S (1995b) Geochemical constraints of enclaves and Pre-Himalayan Champawat granitoids of Kumaun Lesser Himalaya, India. In: Brown M and Piccoli PM (ed), The origin of granites and related rocks. US Geol Surv Circular, 1129:83–84

  • Kumar S (2020) Schedule of mafic to hybrid magma injections into crystallizing felsic magma chambers and resultant geometry of enclaves in granites: New field and petrographic observations from Ladakh Batholith, Trans-Himalaya, India. Front Earth Sci 8:551097. https://doi.org/10.3389/feart.2020.551097.

  • Leake BE, Woolley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, Krivovichev VG, Schumacher JC, Stephenson NCN, Whittaker EJW (2003) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Can Mineral 41:1355–1370

    Article  Google Scholar 

  • Leelanandam C (1989) The Prakasam Alkaline Province in Andhra Pradesh. India, J Geol Soc India 34:25–45

    Google Scholar 

  • Li S, Yang X, Huang Y, Sun W (2014) Petrogenesis and mineralization of the Fenghuangshan skarn Cu–Au deposit, Tongling ore cluster field. Lower Yangtze metallogenic belt. Ore Geol Rev 58:148–162

    Article  Google Scholar 

  • Luhr JF, Carmichael ISE, Varekamp JC (1984) The 1982 eruptions of El Chichon volcano, Chiapas, Mexico-Mineralogy petrology of the anhydrite bearing pumices. J Volcanol Geoth Res 23:69–108

    Article  Google Scholar 

  • Martin D, Griffiths RW, Campbell IH (1987) Compositional and thermal convection in magma chambers. Contrib Mineral Petrol 96:465–475

    Article  Google Scholar 

  • Molina J F, Scarrow J H, Montero P G, Fernando B (2009) High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contrib Mineral Petrol 158:69–98. https://doi.org/10.1007/s00410-008-0371-4

    Article  Google Scholar 

  • Nachit H, Razafimahefa N, Stussi JM, Carron JP (1985) Composition chimique des biotites et typologie magmatique des granitoides. C R Acad Sci 301:813–818

    Google Scholar 

  • Nachit H, Ibhi A, El Abia H, Ohoud MB (2005) Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. C R Geosci 337:1415–1420

    Article  Google Scholar 

  • Narshimha Ch, Reddy UVB, Sesha Sai VV, Subramanyam KSV (2018) Petrological and geochemical characterisation of the Punugodu granite pluton Nellore Schist Belt; implications for Proterozoic anorogenic granite magmatism in the Eastern Dharwar Craton, Southern India. J Ind Geophys Union 22:187–197

    Google Scholar 

  • Narshimha Ch, Sesha Sai VV, Reddy UVB, Vijaya Kumar T, Babu EVSSK, Sreenivas B, Subramanyam KSV (2022) Geochemistry and new zircon U-Pb geochronology of Mesoproterozoic Punugodu granite pluton, SE India: implications for anorogenic magmatism along the western margin of Nellore Schist Belt. India Geol Mag 159(6):904–924. https://doi.org/10.1017/S0016756822000073

    Article  Google Scholar 

  • Otten MT (1984) The origin of brown hornblende in the Artfjallet gabbro and dolerites. Contrib Mineral Petrol 86:189–199

    Article  Google Scholar 

  • Pandey R, Rao NVC, Pandit D, Sahoo S, Dhote P (2017) Imprints of modal metasomatism in the post-Deccan subcontinental lithospheric mantle: petrological evidence from an ultramafic xenolith in an Eocene lamprophyre. Geol Soc Spec Publ 463(1):117. https://doi.org/10.1144/SP463.6

    Article  Google Scholar 

  • Panwar KS, Kumar S (2022) Granite series assessment, nature and crystallization condition of Paleoproterozoic granite gneisses from Askot and Chiplakot klippe, Kumaun Lesser Himalaya. India J Earth Syst Sci 131:173. https://doi.org/10.1007/s12040-022-01910-4

    Article  Google Scholar 

  • Paterson SR, Vernon RH, Zak J (2005) Mechanical instabilities and physical accumulation of K-feldsparmegacrysts in granitic magma, Tuolumne batholith, California, USA. J Virtual Explor 18 (1).

  • Patersona SR, Pignottaa GS, Vernona RH (2004) The significance of microgranitoid enclave shapes and orientations. J Struct Geol 26:1465–1481

    Article  Google Scholar 

  • Patiño Douce AE (1993) Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences form biotite stability. Chem Geol 108:133–162

    Article  Google Scholar 

  • Patiño Douce A E (1999) What do experiments tell us about the relative contribution of crust and mantle to the origin of granitic magmas? In: Understanding Granites: Integrating new and classical techniques. Castro A, Fernandez C, and Vigneres JL, (ed), Geol Soc Spec Publ 168:55–75.

  • Perugini D, PoliChristofides Eleftheriadis G, G (2003) Magma mixing in the Sithonia plutonic Complex, Greece: evidence from mafic microgranular enclaves. Mineral Petrol 78:173–200

    Article  Google Scholar 

  • Pesquera A, Pons J (1989) Field evidence of magma mixing in the Aya granitic massif (Basque Pyrenees, Spain). Neu Jb Mineral Mh H 10:441–454

    Google Scholar 

  • Petfort N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the earth’s crust. Nature 408:669–673

    Article  Google Scholar 

  • Pitcher WS (1987) Granites and yet more granites forty years on. Geol Rundschau 76:51–79

    Article  Google Scholar 

  • Poli GE, Tommasini S (1991) Model for the origin and significance of microgranular enclaves in calc- alkaline granitoids. J Petrol 32:666

    Article  Google Scholar 

  • Price R, Spandler C, Arculus R, Reay A (2011) The Longwood Igneous Complex, Southland, New Zealand: a Permo-Jurassic, intra-oceanic, subduction-related, I-type batholithic complex. Lithos 126:1–21

    Article  Google Scholar 

  • Ramakrishna M, Vaidyanadhan R (2008) Geology of India (vol. I). Geological Society of India, Bangalore

    Google Scholar 

  • Raman PK, Murthy VN (1997) Geology of Andhra Pradesh. Geological Society of India, Bangalore

    Google Scholar 

  • Ratnakar J, Vijaya Kumar K (1995) Petrogenesis of quartzbearing syenite occurring within nepheline syenite of the Elchuru alkaline complex, Prakasam Province. Andhra Pradesh Jour Geol Soc Ind 46(6):611–618

    Google Scholar 

  • Ravikant V (2010) Palaeoproterozoic (1.9 Ga) extension and breakup along the eastern margin of the Eastern Dharwar Craton, SE India: New Sm–Nd isochron age constraints from anorogenic mafic magmatism in the Neoarchaean Nellore greenstone belt. Jour Asian Earth Sci 12:67–81

    Article  Google Scholar 

  • Reddy UVB (1991) Granite magmatism east of Cuddapah basin some implications. Jour Ind Acad of Geoscience 34:1–6

    Google Scholar 

  • Reid JB Jr, Murray DP, Hermes OD, Steig EJ (1993) Fractional crystallization in granites of the Sierra Nevada: how important is it? Geology 21:587–590

    Article  Google Scholar 

  • Reiners PW, Nelson BK, Ghiorso MS (1995) Assimilation of felsic crust by basaltic magma; thermal limits and extents of crustal contamination of mantle-derived magmas. Geology 23:563–566

    Article  Google Scholar 

  • Ribeiro JM, Maury RC, Grégoire M (2016) Are Adakites slab melts or high-pressure fractionated mantle melts? Jpetrol 57(5):839–862. https://doi.org/10.1093/petrology/egw023

    Article  Google Scholar 

  • Ridolfi F (2021) Amp-TB2: an updated model for calcic amphibole thermobarometry. Minerals 11:324. https://doi.org/10.3390/min11030324

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66

    Article  Google Scholar 

  • Roberts MP, Clemens JD (1995) Feasibility of AFC models for the petrogenesis of calc-alkaline magma series. Contrib Mineral Petrol 121:139–147

    Article  Google Scholar 

  • Rooney TO, Franceschi P, Hall CM (2011) Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation? Contrib Mineral Petrol 161:373–388. https://doi.org/10.1007/s00410-010-0537-8

    Article  Google Scholar 

  • Saha D (2011) Dismembered ophiolites in Paleoproterozoic nappe complexes of Kandra and Gurramkonda, South India. J Asian Earth Sci 42:158–175

    Article  Google Scholar 

  • Saha D, Sain A, Nandi P, Mazumder R, Kar R (2015) Tectonostratigraphic evolution of the Nellore schist belt, southern India, since the Neoarchaean. Geol Soc Lond Memoir 43:269–282

    Article  Google Scholar 

  • Sain A, Saha D (2018) Structure and tectonics of a Mesoproterozoic ophiolite: insight from Kanigiri Ophiolite with a mélange zone, southern India. Tectonophysics 744:177–204

    Article  Google Scholar 

  • Sain A, Saha D (2022) Overlapping A-type and S-type characters in late- to post-tectonic granites–petro-tectonic evolution of late Mesoproterozoic Andhra Konda granite, Nellore Schist Belt, southern India. J Earth Syst Sci 131:137. https://doi.org/10.1007/s12040-022-01889-y

    Article  Google Scholar 

  • Sain A, Saha D, Joy S, Jelsma H, Armstrong R (2017) New SHRIMP age and microstructures from a deformed A-Type Granite, Kanigiri, Southern India: constraining the Hiatus between Orogenic closure and Post-orogenic Rifting. J Geol 125:241–259

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al in hornblende barometer. Contrib Mineral Petrol 110(2–3):304–310

    Article  Google Scholar 

  • Sesha Sai VV (2013) Proterozoic granite magmatism along the terrane boundary tectonic zone to the east of Cuddapah Basin, Andhra Pradesh – Petrotectonic implications for precambrian crustal growth in Nellore Schist Belt of Eastern Dharwar Craton. J Geol Soc India 81:167–182

    Article  Google Scholar 

  • Sesha Sai VV (2019) Proterozoic magnesian feldspathic magmatism in the Nallamalai fold belt, Southern India: petrogenesis of Vellaturu–Ipuru–Nakerikally (VIN) arc magmatic granites, Eastern Dharwar craton. J Geol Soc India 93:409–418

    Article  Google Scholar 

  • Sesha Sai VV, Rama Rao G, Prasad GJS, Reddy VA (2013) Occurrence of rare titanium niobium-rich astrophyllite in the Podili alkali granite pluton, Prakasam district, Andhra Pradesh, India. Curr Sci 104:1290–1293

    Google Scholar 

  • Sharma R (2009) Cratons and fold belts of India (vol 127). Lecture Notes in Earth Sciences, Springer

    Google Scholar 

  • Sial AN, Ferreira VP, Fallick AE, Jeronimo M, Cruz M (1998) Amphibole rich clots in calc-alkalic granitoids in the Borborema province northeastern Brazil. J South Am Earth Sci 11:457–471

    Article  Google Scholar 

  • Singh B, Kumar S (2005) Petrogenetic appraisal of early Palaeozoic granitoids of Kinnaur District, Higher Himachal Himalaya. India Gondwana Res 8(1):67–76

    Article  Google Scholar 

  • Sousa CS, Conceição H, Soares HS, Fernandes DM, Rosa MLS (2022) Magmatic processes recorded in plagioclase crystals of the Rio Jacaré Batholith, Sergipano Orogenic system, Northeast Brazil. J S Am Earth Sci 118:103942. https://doi.org/10.1016/j.jsames.2022.103942

    Article  Google Scholar 

  • Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J Petrol 42:999–1018

    Article  Google Scholar 

  • Srinivasan K N, Roop Kumar D (1995) Geological mapping of Podili-Kanigiri section in northern part of Nellore Schist Belt, Prakasam district, AP. In: Unpublished Progress Report Geological Survey of India, FS 1992–93

  • Subramanyam KSV, Santosh M, Yang QY, Zm Z, Balaram V, Reddy UVB (2016) Mesoproterozoic island arc magmatism along the southeastern margin of the Indian Plate: evidence from geochemistry and zircon U-Pb ages of mafic plutonic complexes. J Asian Earth Sci 130:116–138

    Article  Google Scholar 

  • Taylor HP Jr (1980) The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth Planet Sci Lett 47(2):243–254

    Article  Google Scholar 

  • Thirupathi PV, Sudhakar Ch, Krishna KVG, Dhana Raju R (1996) Perology and Geochemistry of the proterozoic Atype granite of Kanigiri, Prakasam District, Andhra Pradesh, India: implications for rare metal mineralisation. Explor Res Atomic Minerals 9:61–72

    Google Scholar 

  • Tindle AG, Webb PC (1990) Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks. Eur J Mineral 2:595–610

    Article  Google Scholar 

  • Tischendorf G, Rieder M, Forster HJ, Gottesmann B, Guidotti CV (2004) A new graphical presentation and subdivision of potassium micas. Mineral Mag 68:649–667

    Article  Google Scholar 

  • Uchida E, Endo S, Makino M (2007) Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resour Geol v 57(1):47–56

    Article  Google Scholar 

  • Upadhyay D (2008) Alkaline magmatism along the southeastern margin of the Indian shield: implications for regional geodynamics and constraints on craton–Eastern Ghats Belt suturing. Precamb Res 162:59–69

    Google Scholar 

  • Ustunisik G, Kilinc A, Nielsen R (2014) New insights into the processes controlling compositional zoning in plagioclase. Lithos 200–201:80–93

    Article  Google Scholar 

  • Vasudevan D, Rao TM (1976) The high-grade schistose rocks of Nellore schist belt, Andhra Pradesh and their geologic evolution. Indian Mineralogist 16:43–47

    Google Scholar 

  • Vernon RH (1983) Restite, xenolith, and microgranitoid enclaves in granites. Clarke Memorial Lecture. Proc Roy Soc N S W 116:77–103

    Google Scholar 

  • Vernon RH (1984) Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic environment. Nature 309(5967):438–439. https://doi.org/10.1038/309438a0

    Article  Google Scholar 

  • Vernon R H (1991) Interpretation of microstructures of microgranitoid enclaves. In: Didier J and Barbarin B (Eds.), Enclaves and Granite Petrology. Developments in Petrology, Elsevier, Amsterdam 13:277–291.

  • Vijaya Kumar K, Frost CD, Frost BR, Chamberlain KR (2007) The Chimakurti, Errakonda, and Uppalapadu plutons, Eastern Ghats Belt, India: an unusual association of tholeiitic and alkaline magmatism. Lithos 97:30–57

    Article  Google Scholar 

  • Vijaya Kumar K, Ernst WG, Leelanandam C, Wooden JL, Grove MJ (2010) First Paleoproterozoic ophiolite from Gondwana: geochronological–geochemical documentation of ancient oceanic crust from Kandra, SE India. Tectonophysics 487:22–32

    Article  Google Scholar 

  • Wall VJ, Clemens JD, Clarke DB (1987) Models for granitoid evolution and source compositions. J Geol 95:731–749

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Weinberg RF, Sial AN, Pessoa RR (2001) Magma flow within the Tavares pluton, northeastern Brazil: Compositional and thermal convection. Geol Soc Am Bull 113:508–520 https://doi.org/10.1130/0016-7606(2001)113<0508

  • Weinberg R, Vernon RH, Schmeling H (2021) Processes in mushes and their role in the differentiation of granitic rocks. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2021.103665

    Article  Google Scholar 

  • Whalen JB, Chappell BW (1988) Opaque mineralogy and mafic mineral chemistry of I and S-type granites of the Lachlan Fold Belt, Southeast Australia. Am Mineral 73:281–296

    Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites––Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95(4):407–419. https://doi.org/10.1007/BF00402202

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Wiebe RA, Adams SD (1997) Felsic enclave swarms in the Gouldsboro granite, Coastal Maine: a record of eruption through the roof of a silicic magma chamber. J Geol 105:617–627

    Article  Google Scholar 

  • Wiebe RA, Jellinek M, Markley MJ, Hawkins DP, Snyder D (2007) Field observations indicate that the host and enclave magmas have interacted and generated a narrow layer of hybrid magma between them. Contrib Mineral Petrol 153:121–138

    Article  Google Scholar 

  • Wones DR (1972) Stability of biotite: a reply. Am Mineral 57:316–317

    Google Scholar 

  • Wones DR, Eugster HP (1965) Stability of biotite: experiment, theory and application. Am Minera l50:1228–1272.

  • Wu FY, Sun DY, Li HM, Jahn BM, Wilde S (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173. https://doi.org/10.1016/S0009-2541(02)00018-9

    Article  Google Scholar 

  • Wyllie PJ, Cox KG, Biggar GM (1962) The habit of apatite in synthetic systems and igneous rocks. J Pet 3:238–243

  • Xu J, Xia XP, Wang Q, Spencer CJ, Lai CK, Ma JL (2021) Pure sediment derived granites in a subduction zone. GSA Bull 134:599–615. https://doi.org/10.1130/b36016.1

    Article  Google Scholar 

  • Yang XM, Lentz DR (2005) Chemical composition of rock-forming minerals in gold related granitoid intrusions, southwestern New Brunswick, Canada: implications for crystallization conditions, volatile exsolution, and fluorine-chlorine activity. Contrib Mineral Petrol 150:287–305

    Article  Google Scholar 

  • Zhou ZX (1986) The origin of intrusive mass in Fengshandong. Hubei Province Acta Petrol Sin 2:59–70

    Google Scholar 

Download references

Acknowledgements

CHN acknowledges the UGC- Dr. D. S. Kothari Postdoctoral Fellowship, No.F.4-2/2006 (BSR)/ES/20-21/0005. Part of the work is supported under a research grant [MoES/P.O.(Geo)/10 1(v)/2017] to SK. The research facilities developed in the Department of Geology, Centre of Advanced Study, Kumaun University, under CAS-Phase-I & II and DST-FIST-II programmes are gratefully acknowledged. Pradeep K Goswami, Head of the Department is thanked for continuous encouragement and providing necessary facilities. N-V Chalapathi Rao is thanked for permission of using the EPMA facility at Banaras Hindu University, Varanasi, India. Shailendra Pundir, Kapil S. Panwar, and Pramod Singh Khati are thanked for their helps during the course of present research. The generous scientific comments from anonymous reviewers and handling editor Professor Binbin Wang greatly improved the earlier version of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narshimha, C., Kumar, S. Peraluminous A-type granites formed through synchronous fractionation, magma mixing, mingling, and undercooling: evidence from microgranular enclaves and host Mesoproterozoic Kanigiri granite pluton, Nellore Schist Belt, southeast India. Acta Geochim 42, 603–636 (2023). https://doi.org/10.1007/s11631-023-00608-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-023-00608-8

Keywords

Navigation