Skip to main content

Advertisement

Log in

Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

This work focuses on a rigorous analysis of the physical–chemical, compositional and textural relationships of amphibole stability and the development of new thermobarometric formulations for amphibole-bearing calc-alkaline products of subduction-related systems. Literature experimental results (550–1,120°C, <1,200 MPa, −1 ≤ ΔNNO ≤ +5), H2O–CO2 solubility models, a multitude of amphibole-bearing calc-alkaline products (whole-rocks and glasses, representing 38 volcanoes worldwide), crustal and high-P (1–3 GPa) mantle amphibole compositions have been used. Calcic amphiboles of basalt-rhyolite volcanic products display tschermakitic pargasite (37%), magnesiohastingsite (32%) and magnesiohornblende (31%) compositions with aluminium number (i.e. Al# = [6]Al/AlT) ≤ 0.21. A few volcanic amphiboles (~1%) show high Al# (>0.21) and are inferred to represent xenocrysts of crustal or mantle materials. Most experimental results on calc-alkaline suites have been found to be unsuitable for using in thermobarometric calibrations due to the high Al# (>0.21) of amphiboles and high Al2O3/SiO2 ratios of the coexisting melts. The pre-eruptive crystallization of consistent amphiboles is confined to relatively narrow physical–chemical ranges, next to their dehydration curves. The widespread occurrence of amphiboles with dehydration (breakdown) rims made of anhydrous phases and/or glass, related to sub-volcanic processes such as magma mixing and/or slow ascent during extrusion, confirms that crystal destabilization occurs with relatively low TP shifts. At the stability curves, the variance of the system decreases so that amphibole composition and physical–chemical conditions are strictly linked to each other. This allowed us to retrieve some empirical thermobarometric formulations which work independently with different compositional components (i.e. Si*, AlT, Mg*, [6]Al*) of a single phase (amphibole), and are therefore easily applicable to all types of calc-alkaline volcanic products (including hybrid andesites). The Si*-sensitive thermometer and the fO2–Mg* equation account for accuracies of ±22°C (σest) and 0.4 log units (maximum error), respectively. The uncertainties of the AlT-sensitive barometer increase with pressure and decrease with temperature. Near the PT stability curve, the error is <11% whereas for crystal-rich (porphyritic index i.e. PI > 35%) and lower-T magmas, the uncertainty increases up to 24%, consistent with depth uncertainties of 0.4 km, at 90 MPa (~3.4 km), and 7.9 km, at 800 MPa (~30 km), respectively. For magnesiohornblendes, the [6]Al*-sensitive hygrometer has an accuracy of 0.4 wt% (σest) whereas for magnesiohastingsite and tschermakitic pargasite species, H2Omelt uncertainties can be as high as 15% relative. The thermobarometric results obtained with the application of these equations to calc-alkaline amphibole-bearing products were finally, and successfully, crosschecked on several subduction-related volcanoes, through complementary methodologies such as pre-eruptive seismicity (volcano-tectonic earthquake locations and frequency), seismic tomography, Fe–Ti oxides, amphibole–plagioclase, plagioclase–liquid equilibria thermobarometry and melt inclusion studies. A user-friendly spreadsheet (i.e. AMP-TB.xls) to calculate the physical–chemical conditions of amphibole crystallization is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam J, Oberti R, Cámara F, Green TH (2007) An electron microprobe, LAM-ICP-MS and single-crystal X-ray structure refinement study of the effect of pressure, melt-H2O concentration and fO2 on experimentally produced basaltic amphiboles. Eur J Mineral 19:641–655

    Google Scholar 

  • Aguilera E, Almeida E, Balseca W, Barberi F, Innocenti F, Coltelli M, Pasquarè G (1988) El Reventador: an active volcano in the sub-andean zone of Ecuador. Rend Soc Ital Mineral Petrol 43:853–875

    Google Scholar 

  • Alonso-Peretz R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157:541–558

    Google Scholar 

  • Andersen DJ, Lindsley D (1988) Internal consistent solution models for Fe–Mg–Mn–Ti oxides. Am Mineral 73:714–726

    Google Scholar 

  • Andersen DJ, Lindsley D, Davidson PM (1993) QUILF: a Pascal program to assess equilibria among Fe–Mg–Mn–Ti-oxides, pyroxenes, olivine, and quartz. Comp Geosci 19:1333–1350

    Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. Am Mineral 80:549–559

    Google Scholar 

  • Andrews BJ, Gardner JE, Housh TB (2008) Repeated recharge, assimilation, and hybridization in magmas erupted from El Chichón as recorded by plagioclase and amphibole phenocrysts. J Volcanol Geotherm Res 175:4415–4426

    Google Scholar 

  • Artemieva IM (2009) The continental lithosphere: reconciling thermal, seismic, and petrologic data. Lithos 109:23–46

    Google Scholar 

  • Aspinal WP, Miller AD, Lynch LL, Latchman JL, Stewart RC, White RA, Power JA (1998) Soufrière Hills eruption, Montserrat, 1995–1997: volcanic earthquake locations and fault plane solutions. Geophys Res Lett 25:3397–3400

    Google Scholar 

  • Bachmann O, Dungan MA (2002) Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. Am Mineral 87:1062–1076

    Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. J Petrol 43:1469–1503

    Google Scholar 

  • Behrens H, Gaillard F (2006) Geochemical aspects of melts: volatiles and redox behaviour. Elements 2:275–280

    Google Scholar 

  • Benz HM, Chouet BA, Dawson PB, Lahr JC, Page RA, Hole JA (1996) Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska. J Geophys Res 101:8111–8128

    Google Scholar 

  • Bernard A, Knittel U, Weber B, Weis D, Albrecht A, Hattori K, Klein J, Oles D (1996) Petrology and Geochemistry of the 1991 eruption products of Mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) Fire and mud. Eruption and lahars of Mount Pinatubo, Philippines, pp 767–797

  • Blank JG, Broker RA (1994) Experimental studies of carbon dioxide in silicate melts: solubility, speciation and stable carbon isotope behaviour. Rev Mineral Geochem 30:157–186

    Google Scholar 

  • Blatter DL, Carmichael ISE (1998) Plagioclase-free andesites from Zitácuaro (Michoacán), Mexico: petrology and experimental constraints. Contrib Mineral Petrol 132:121–138

    Google Scholar 

  • Blundy J, Cashman KV (2008) Petrologic reconstruction of magmatic system variables and processes. Rev Mineral Geochem 69:179–239

    Google Scholar 

  • Blundy J, Holland TJ (1990) Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib Mineral Petrol 104:208–224

    Google Scholar 

  • Blundy J, Cashman KV, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80

    Google Scholar 

  • Blundy J, Cashman KV, Berlo K (2008) Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980–1986 and current eruptions. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, chap 33. US Geological Survey Professional Paper 2007–2008, pp 35

  • Bojar HA, Walter F (2006) Fluoro-magnesiohastingsite from Dealul Uroi (Hunedoara county, Romania): mineral data and crystal structure of a new amphibole end-member. Eur J Mineral 18:503–508

    Google Scholar 

  • Boyd FR, England JL (1960) Apparatus for phase-equilibrium measurements at pressures up to 50 Kilobars and temperatures up to 1750°C. J Geophys Res 65:741–748

    Google Scholar 

  • Browne BL, Gardner JE (2006) The influence of magma ascent path on the texture, mineralogy and formation of hornblende reaction rims. Earth Planet Sci Lett 246:161–176

    Google Scholar 

  • Buckley VJE, Sparks RSJ, Wood BJ (2006) Hornblende dehydration reactions during magma ascent at Soufriere Hills. Contrib Mineral Petrol 151:121–140

    Google Scholar 

  • Carlson RL, Raskin GS (1984) Density of the ocean crust. Nature 311:555–558

    Google Scholar 

  • Carmichael ISE (1991) The redox state of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106:106–141

    Google Scholar 

  • Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134:33–51

    Google Scholar 

  • Chadwick JP, Troll VR, Ginibre C, Morgan D, Gertisser R, Waight TE, Davidson JP (2007) Carbonate assimilation at Merapi volcano, Java, Indonesia: insights from crystal isotope stratigraphy. J Petrol 48:1793–1812

    Google Scholar 

  • Chen B, Chen ZC, Jahn BM (2009) Origin of mafic enclaves from the Taihang Mesozoic orogen, north China craton. Lithos 110:343–358

    Google Scholar 

  • Chertkoff DG, Gardner JE (2004) Nature and timing of magma interaction before, during, and after the caldera-forming eruption of Volcàn Ceboruco, Mexico. Contrib Mineral Petrol 146:715–735

    Google Scholar 

  • Christensen DB, Saldaña SC, Snelson CM, Brown L, Voight B (2008) Crustal structure below the Soufrière Hills volcano, Montserrat using seismic reflection data. Am Geophts Un, Fall Meeting, V51C-2038

  • Clowe CA, Popp RK, Fritz SJ (1988) Experimental investigation of the effect of oxygen fugacity on the ferric-ferrous ratios and unit cell parameters of four natural clinoamphiboles. Am Mineral 73:500–506

    Google Scholar 

  • Clynne MA (1999) A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. J Petrol 40:105–132

    Google Scholar 

  • Clynne MA, Calvert AT, Wolfe EW, Evarts RC, Fleck RJ, Lanphere MA (2008) chap 28. The Pleistocene eruptive history of Mount St. Helens, Washington—from 300,000 to 12,800 years ago. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, chap 31. US Geological Survey Professional Paper 2007–2008, pp 36

  • Conte AM (1993) High temperature amphibole breakdown in calcalkaline subvolcanic rocks from Sarroch District (Sardinia, Italy): implication for mixing processes. Neues Jahrb Mineral Monats 3:133–144

    Google Scholar 

  • Coogan LA, Wilson RN, Gillis KM, MacLeod CJ (2001) Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry. Geochim Cosmochim Acta 65:4339–4357

    Google Scholar 

  • Costa F (2000) The petrology and geochemistry of diverse crustal xenoliths, Tatara-San Pedro volcanic complex, Chilean Andes. Terre & Environment 19, pp 120

  • Costa F, Chakraborty S (2004) Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine. Earth Planet Sci Lett 227:517–530

    Google Scholar 

  • Costa F, Singer B (2002) Evolution of Holocene dacite and compositionally zoned magma, Volcan San Pedro, Southern volcanic zone, Chile. J Petrol 43:1571–1593

    Google Scholar 

  • Costa F, Scaillet B, Pichavant M (2004) Petrological and experimental constraints on the pre-eruption compositions of Holocene dacite from Volcàn San Pedro (36°S, Chilean Andes) and importance of sulphur in silicic subduction-related magmas. J Petrol 45:855–881

    Google Scholar 

  • Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrium in lavas explained by convective self-mixing in open magma chamber. Nature 411:1037–1039

    Google Scholar 

  • Devine JD, Murphy MD, Rutherford MJ, Barclay J, Sparks RSJ, Carroll MR, Young SR, Gardner JE (1998) Petrologic evidence for pre-eruptive pressure-temperature conditions, and recent reheating, of andesitic magma erupting at the Soufrière Hills Volcano, Montserrat, W.I. Geophys Res Lett 25:3669–3672

    Google Scholar 

  • Devine JD, Rutherford MJ, Norton GE, Young SR (2003) Magma storage region processes inferred from geochemistry of Fe-Ti oxides in andesitic magma, Soufrière Hills Volcano, Montserrat, W.I. J Petrol 44:1375–1400

    Google Scholar 

  • Dirksen O, Humphreys MCS, Pletchov P, Melnik O, Demyanchuk Y, Sparks RSJ, Mahony S (2006) The 2001–2004 dome-forming eruption of Shiveluch volcano, Kamchatka: observation, petrological investigation and numerical modelling. J Volcanol Geotherm Res 155:201–226

    Google Scholar 

  • Engvik AK, Austrheim H, Erambert M (2001) Interaction between fluid flow, fracturing and mineral growth during eclogitization, an example from the Sunnfjord area, Western Gneiss Region, Norway. Lithos 57:111–141

    Google Scholar 

  • Evans BW, Ghiorso MS (1995) Thermodynamics and petrology of cummingtonite. Am Mineral 80:649–663

    Google Scholar 

  • Fichaut M, Marcelot G, Clocchiatti R (1989a) Magmatology of Mt. Pelee (Martinique, F.W.I.); II, Petrology of gabbroic and dioritic cumulates. J Volcanol Geotherm Res 38:171–187

    Google Scholar 

  • Fichaut M, Maury RC, Trainees H, Westercamp D, Joron JL, Gourgaud A, Coulon C (1989b) Magmatology of Mt. Pelee (Martinique, F.W.I.); III, Fractional crystallization versus magma mixing. J Volcanol Geotherm Res 38:189–213

    Google Scholar 

  • Foden JD (1983) The petrology of the calcalkaline lavas of Rindjani Volcano, East Sunda Arc: a model for island arc petrogenesis. J Petrol 24:98–130

    Google Scholar 

  • Foden JD, Green DH (1992) Possible role of amphibole in the origin of andesite: some experimental and natural evidence. Contrib Mineral Petrol 109:479–493

    Google Scholar 

  • Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol 46:555–578

    Google Scholar 

  • Garcia MO, Jacobson SS (1979) Crystal cloths, amphibole fractionation and the evolution of calc-alkaline magmas. Contrib Mineral Petrol 69:319–327

    Google Scholar 

  • Gardner JE, Carey S, Sigurdsson H, Rutherford MJ (1995a) Influence of magma composition on the eruptive activity of Mount St. Helens, Washington. Geology 23:523–526

    Google Scholar 

  • Gardner JE, Rutherford MJ, Carey S, Sigurdsson H (1995b) Experimental constraints on pre-eruptive water contents and changing magma storage prior to explosive eruptions of Mount St Helens volcano. Bull Volcanol 57:1–17

    Google Scholar 

  • Gerbe MC, Thouret JC (2004) Role of magma mixing in the petrogenesis of tephra erupted during the 1990–98 explosive activity of Nevado Sabancaya, southern Peru. Bull Volcanol 66:541–561

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, New York, p 390

    Google Scholar 

  • Gorini A (2008) Studio petrografico e geochimico dei prodotti del vulcano Cerro Negro (Zona di Retroarco dell’Ecuador). Unpublished Bachelor Degree Thesis (in Italian), Università di Urbino, pp 150

  • Gourgaud A, Fichaut M, Joron JL (1989) Magmatology of Mount Pelée (Martinique, F.W.I.); I, Magma mixing and triggering of the 1902 and 1929 Pelean nuées ardentes. J Volcanol Geotherm Res 38:143–169

    Google Scholar 

  • Green NL (2006) Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system. Lithos 87:23–49

    Google Scholar 

  • Grove TL, Donnelly-Nolan JM, Housh T (1997) Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N California. Contrib Mineral Petrol 127:205–223

    Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533

    Google Scholar 

  • Grove TL, Baker MB, Price RC, Parman SW, Elkins-Tanton LT, Chatterjee N, Müntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Mineral Petrol 148:542–565

    Google Scholar 

  • Hall M, Ramon P, Mothes P, LePennec JL, Garcia A, Samaniego P, Yepes H (2004) Volcanic eruptions with little warning: the case of Volcan Reventador’s Surprise November 3, 2002 Eruption, Ecuador. Rev Geol Chile 31:349–358

    Google Scholar 

  • Harlov D, Renzulli A, Ridolfi F (2006) Iron-bearing chlor-fluorapatites in crustal xenoliths from the Stromboli volcano (Aeolian Islands, southern Italy); an indicator of fluid processes during contact metamorphism. Eur J Mineral 18:233–241

    Google Scholar 

  • Heliker C (1995) Inclusions in Mount St. Helens dacite erupted from 1980 through 1983. J Volcanol Geotherm Res 66:115–135

    Google Scholar 

  • Hidalgo S, Monzier M, Martin H, Chazot G, Eissen J-P, Cotton J (2007) Adakitic magmas in the Ecuadorian Volcanic Front: Petrogenesis of the Iliniza Volcanic Complex (Ecuador). J Volcanol Geotherm Res 159:366–392

    Google Scholar 

  • Hirschmann MM, Ghiorso MS, Davis FA, Gordon SM, Mukherjee S, Grove TL, Krawczynski M, Medard E, Till CB (2008) Library of Experimental Phase Relations (LEPR): a database and Web portal for experimental magmatic phase equilibria data. Geochem Geophys Geosyst 9. doi:10.1029/2007GC001894

  • Holland TJB, Blundy JD (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Google Scholar 

  • Hollister LS, Grissom GC, Peters EK, Stowell HH, Sisson VB (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72:231–239

    Google Scholar 

  • Holtz F, Sato H, Lewis J, Behrens H, Nakada S (2005) Experimental petrology of the 1991–1995 Unzen dacite, Japan Part I: Phase relations, phase composition and pre-eruptive conditions. J Petrol 46:319–337

    Google Scholar 

  • Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch Volcano: insights from phenocryst zoning. J Petrol 47:2303–2334

    Google Scholar 

  • Hunter AG, Blake S (1995) Petrogenetic evolution of a transitional tholeiitic-calc-alkaline series: Towada Volcano, Japan. J Petrol 36:1579–1605

    Google Scholar 

  • Jobstraibizer PG, De Pieri R (1984) Crystal chemistry of amphibole from gabbroic to granodioritic rock types of the Adamello Massif (Northern Italy). Rend Soc Ital Mineral Petrol 39:123–144

    Google Scholar 

  • Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17:837–841

    Google Scholar 

  • King PL, Holloway JR (2002) CO2 solubility and speciation in intermediate (andesitic) melts: the role of H2O and composition. Geochim Cosmochim Acta 66:1627–1640

    Google Scholar 

  • Kullerud K (1996) Chlorine-rich amphiboles: interplay between amphibole composition and an evolving fluid. Eur J Mineral 8:355–370

    Google Scholar 

  • Kullerud K, Erambert M (1999) Cl-scapolite, Cl-amphibole, and plagioclase equilibria in ductile shear zones at Nusfjord, Lofoten, Norway: implications for fluid compositional evolution during fluid-mineral interaction in the deep crust. Geochem Cosmochem Acta 63:3829–3844

    Google Scholar 

  • Lange RA, Frey HM, Hector J (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Mineral 94:494–506

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Schumaker JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineral Mag 61:295–321

    Google Scholar 

  • Lee C-TA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279:20–33

    Google Scholar 

  • Lees JM (2007) Seismic tomography of magmatic systems. J Volcanol Geotherm Res 167:37–56

    Google Scholar 

  • Lees JM, Crosson RS (1989) Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data. J Geophys Res 94:5716–5728

    Google Scholar 

  • Léger A, Rebbert C, Webster J (1996) Cl-rich biotite and amphibole from Black Rock Forest, Cornwall, New York. Am Mineral 81:495–504

    Google Scholar 

  • Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G, Trumbull R, Wilke H-G, Romer RL, Dulsky P (2001) Composition and density model of the continental crust at an active continental margin–the Central Andes between 21° and 27°S. Tectonophysics 341:195–223

    Google Scholar 

  • Luckett R, Baptie B, Ottemoller L, Thompson G (2007) Seismic monitoring of the Soufrière Hills Volcano, Montserrat. Seismol Res Lett 78:192–200

    Google Scholar 

  • Luhr JF (2002) Petrology and geochemistry of the 1991 and 1998–1999 lava flows from Volcán de Colima, México: implications for the end of the current eruptive cycle. J Volcanol Geotherm Res 117:169–194

    Google Scholar 

  • Martel C, Pichavant M, Bourdier JL, Traineau H, Holtz F, Scaillet B (1998) Magma storage conditions and control of eruptive regime in silicic volcanoes: experimental evidence from Mt. Pelée. Earth Planet Sci Lett 156:89–99

    Google Scholar 

  • Martel C, Pichavant M, Holtz F, Scaillet B, Bourdier JL, Traineau H (1999) Effects of fO2 and H2O on andesite phase relation between 2 and 4 kbar. J Geophys Res 104:29453–29470

    Google Scholar 

  • Mastin LG, Roeloffs E, Beeler NM, Quick JE (2008) Constraints on the size, overpressure, and volatile content of the Mount St. Helens magma system from geodetic and dome-growth measurements during the 2004–2006 eruption. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, chap 22. US Geological Survey Professional Paper 2007–2008, pp 30

  • Matthews SJ, Sparks RSJ, Gardeweg MC (1999) The Piedras Grandes-Soncor Eruptions, Lascar Volcano, Chile; Evolution of a Zoned Magma Chamber in the Central Andean Upper Crust. J Petrol 40:1891–1919

    Google Scholar 

  • McCanta MC, Rutherford MJ, Hammer JE (2007) Pre-eruptive and syn-eruptive conditions in the Black Butte, California dacite: insight into crystallization kinetics in a silicic magma system. J Volcanol Geotherm Res 160:263–284

    Google Scholar 

  • McCarthy TC, Patino Douce AE (1997) Experimental evidence for high-temperature felsic melts formed during basaltic intrusion of the deep crust. Geology 25:463–466

    Google Scholar 

  • McDermott F, Delfin FG Jr, Defant MJ, Turner S, Maury R (2005) The petrogenesis of volcanics from Mt. Bulusan and Mt. Mayon in the Bicol arc, Philippines. Contrib Mineral Petrol 150:652–670

    Google Scholar 

  • Miller TP, Chertkoff DG, Eichelberger JC, Coombs ML (1999) Mount Dutton volcano, Alaska: Aleutian arc analog to Unzen volcano, Japan. J Volcanol Geotherm Res 89:275–301

    Google Scholar 

  • Moine BN, Grégoire M, O’Reilly SY, Sheppard SMF, Cottin JY (2001) High field strength element fractionation in the upper mantle: evidence from amphibole-rich composite mantle xenoliths from the Kerguelen Islands (Indian Ocean). J Petrol 42:2145–2167

    Google Scholar 

  • Molina J, Poli S (2000) Carbonate stability and fluid composition in subducted oceanic crust: an experimental study on H2O-CO2-bearing basalts. Earth Planet Sci Lett 176:295–310

    Google Scholar 

  • Montanini A, Tribuzio R, Vernia L (2008) Petrogenesis of basalts and gabbros from an ancient continent–ocean transition (External Liguride ophiolites, Northern Italy). Lithos 101:453–479

    Google Scholar 

  • Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304–319

    Google Scholar 

  • Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am Mineral 83:36–42

    Google Scholar 

  • Moran SC, Malone SD, Qamar AI, Thelen W, Wright AK, Caplan-Auerbach J (2008) Seismicity associated with renewed dome-building at Mount St. Helens, 2004–2005. Petrology of the 2004–2006 Mount St. Helens lava dome-implications for magmatic plumbing and eruption triggering. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, chap 2. US Geological Survey Professional Paper 2007–2008, pp 38

  • Mortazavi M, Sparks RSJ (2004) Origin of rhyolite and rhyodacite lavas and associated mafic inclusions of Cape Akrotiri, Santorini: the role of wet basalt in generating calcalkaline silicic magmas. Contrib Mineral Petrol 146:397–413

    Google Scholar 

  • Müntener O, Kelemen PB, Grove TL (2001) The role oh H2O during the crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Google Scholar 

  • Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Lejeune A-M, Brewer TS, Macdonald R, Black S, Young S (1998) The role of magma mixing in triggering the current eruption at the Soufriere Hills Volcano, Montserrat, West Indies. Geophys Res Lett 25:3433–3436

    Google Scholar 

  • Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Brewer TS (2000) Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills Volcano, Montserrat, West Indies. J Petrol 41:21–42

    Google Scholar 

  • Nakada S, Motomura Y (1999) Petrology of the 1991–1995 eruption at Unzen; effusion pulsation and groundmass crystallization. J Volcanol Geotherm Res 89:173–196

    Google Scholar 

  • Nakagawa M, Nairn IA, Kobayashi T (1998) The 10 ka multiple vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand, Part 2 Petrological insights into magma storage and transport during regional extension. J Volcanol Geotherm Res 86:45–65

    Google Scholar 

  • Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for excel. Comp Geosci 28:597–604

    Google Scholar 

  • Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40

    Google Scholar 

  • Nye CJ, Turner DL (1990) Petrology, geochemistry, and age of the Spurr volcanic complex, eastern Aleutian arc. Bull Volcanol 52:205–226

    Google Scholar 

  • Nye CJ, Swanson SE, Avery VF, Miller TP (1994) Geochemistry of the 1989–1990 eruption of Redoubt Volcano: Part II. Whole-rock major and trace-element chemistry. J Volcanol Geotherm Res 62:429–452

    Google Scholar 

  • O’Neill H St C, Pownceby ML (1993) Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe-“FeO’’, Co-CoO, Ni-NiO, and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer. Contrib Mineral Petrol 114:296–314

  • Pal T, Mitra SK, Sengupta S, Katari A, Bandopadhyay PC, Bhattacharya AK (2007) Dacite–andesites of Narcondam volcano in the Andaman Sea—an imprint of magma mixing in the inner arc of the Andaman–Java subduction system. J Volcanol Geotherm Res 168:93–116

    Google Scholar 

  • Pallister JS, Hoblitt RP, Crandel, Mullineaux DR (1992) Mount St. Helens a decade after the 1980 eruption: magmatic models and a revisited hazards assessment. Bull Volcanol 54:126–146

    Google Scholar 

  • Pallister JS, Hoblitt RP, Meeker GP, Knight RJ, Siems DF (1996) Magma mixing at Mount Pinatubo; petrographic and chemical evidence from the 1991 deposits. In: Newhall CG, Punongbayan RS (eds) Fire and mud. Eruption and lahars of Mount Pinatubo, Philippines, pp 687–731

  • Pallister JS, Thornber CR, Cashman KV, Clynne MA, Lowers HA, Mandeville CW, Brownfield IK, Meeker GP (2008) Petrology of the 2004–2006 Mount St. Helens lava dome-implications for magmatic plumbing and eruption triggering. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, chap 30. US Geological Survey Professional Paper 2007–2008, pp 57

  • Patino Douce AE (1999) What do experiments tell us about relative contributions of crust and mantle to the origin of granitic magmas? Geol Soc Spec Publ 168:55–75

    Google Scholar 

  • Pechar F, Fuess H, Joswig W (1989) Refinement of the crystal structure of kaersutite (Vlčítbra, Bohemia) from neutron diffraction. Neues Jahrb Mineral Monats 89:137–143

    Google Scholar 

  • Phillips MW, Draheim JA, Popp RK, Clowe CA, Pinkerton AA (1989) Effects of oxidation-dehydrogenation in tschermakitic hornblende. Am Mineral 74:764–773

    Google Scholar 

  • Pichavant M, Martel C, Bourdier JL, Scaillet B (2002) Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Peleè (Martinique, Lesser Antilles Arc). J Geophys Res 107, B5, 2093. doi:10.1029/2001JB000315

  • Pichavant M, Costa F, Burgisser A, Scaillet B, Martel C, Poussineau S (2007) Equilibration scales to intermediate magmas-implications for experimental studies. J Petrol 48:1955–1972

    Google Scholar 

  • Prouteau G, Scaillet B (2003) Experimental constraints on the origin of the 1991 Pinatubo dacite. J Petrol 44:2203–2241

    Google Scholar 

  • Putirka KD (2005) Igneous thermometers and barometers based on plagioclase+liquid equilibria: tests of some existing models and new calibrations. Am Mineral 90:336–346

    Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Google Scholar 

  • Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometer for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Mineral 88:1542–1554

    Google Scholar 

  • Reubi O, Nicholls IA (2004) Magmatic evolution at Batur volcanic field, Bali, Indonesia: petrological evidence for polybaric fractional crystallization and implications for caldera-forming eruptions. J Volcanol Geotherm Res 138:345–369

    Google Scholar 

  • Richter DH, Moll-Stalcup EJ, Miller TP, Lanphere MA, Dalrymple GB, Smith RL (1994) Eruptive history and petrology of Mount Drum volcano, Wrangell Mountains, Alaska. Bull Volcanol 56:29–46

    Google Scholar 

  • Ridolfi F, Renzulli A, Macdonald R, Upton BGJ (2006) Peralkaline syenite autoliths from Kilombe volcano, Kenya Rift Valley: evidence for subvolcanic interaction with carbonatitic fluids. Lithos 91:373–392

    Google Scholar 

  • Ridolfi F, Puerini M, Renzulli A, Menna M, Toulkeridis T (2008) The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. J Volcanol Geotherm Res 176:94–106

    Google Scholar 

  • Rutherford MJ, Devine JD (1988) The May 18, 1980, eruption of Mount St. Helens; 3, Stability and chemistry of amphibole in the magma. J Geophys Res 93:11949–11959

    Google Scholar 

  • Rutherford MJ, Devine JD (1996) Preeruption pressure-temperature conditions and volatiles in the 1991 dacitic magma of Mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) Fire and mud. Eruption and lahars of Mount Pinatubo, Philippines, pp 751–766

  • Rutherford MJ, Devine JD (2003) Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufriere Hills magma. J Petrol 44:1433–1454

    Google Scholar 

  • Rutherford MJ, Devine JD (2008) Magmatic conditions and processes in the storage zone of the 2004–2006 Mount St. Helens dacite. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, chap 31. US Geological Survey Professional Paper 2007–2008, pp 24

  • Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown; an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J Geophys Res 98:19667–19685

    Google Scholar 

  • Rutherford MJ, Sigurdsson H, Carey SN, Davis AN (1985) The May 18, 1980, eruption of Mount St. Helens, 1, Melt composition end experimental phase equilibria. J Geophys Res 90:2929–2947

    Google Scholar 

  • Samaniego P, Martin H, Monzier M, Robin C, Fornari M, Eissen JP, Cotten J (2005) Temporal evolution of magmatism in the Northern Volcanic Zone of the Andes: the geology and petrology of Cayambe Volcanic Complex (Ecuador). J Petrol 46:2225–2252

    Google Scholar 

  • Samaniego P, Eissen JP, Le Pennec JL, Robin C, Hall ML, Mothes P, Chavrit D, Cotten J (2008) Pre-eruptive physical conditions of El Reventador volcano (Ecuador) inferred from the petrology of the 2002 and 2004–05 eruptions. J Volcanol Geotherm Res 176:82–93

    Google Scholar 

  • Sato H, Nakada S, Fujii T, Nakamura M, Suzuki-Kamata K (1999) Groundmass pargasite in the 1991–1995 dacite of Unzen volcano; phase stability experiments and volcanological implications. J Volcanol Geotherm Res 89:197–212

    Google Scholar 

  • Sato H, Holtz F, Beherens H, Botcharnikov R, Nakada S (2005) Experimental petrology of the 1991–1995 Unzen Dacite, Japan. Part II: Cl/OH Partitioning between Hornblende and Melt and its implications for the origin of oscillatory zoning of hornblende phenocrysts. J Petrol 42:339–354

    Google Scholar 

  • Scaillet B, Evans BW (1999) The 15 June 1991 eruption of Mount Pinatubo; I, Phase equilibria and pre-eruption P-T-fO2-fH2 conditions of the dacite magmas. J Petrol 40:381–411

    Google Scholar 

  • Scandone R, Malone SD (1985) Magma supply, magma discharge and readjustment of the feeding system of Mount St. Helens during 1980. J Volcanol Geotherm Res 23:239–262

    Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure; an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310

    Google Scholar 

  • Schmidt MW, Sigmarsson O (1998) Peritectic decomposition of amphibole in shallow magma chambers causing explosive volcanism at Pico de Orizaba, Mexico. Terra Abstracts 10:56

    Google Scholar 

  • Scott WE, Sherrod DR, Gardner CA (2008) Overview of 2004 to 2005, and continuing, eruption of Mount St. Helens, Washington. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, chap 1. US Geological Survey Professional Paper 2007–2008, p 19

  • Shane P, Nairn IA, Smith VC (2005) Magma mingling in the 50 ka Rotoiti eruption from Okataina Volcanic centre: implications for geochemical diversity and chronology of large volume rhyolites. J Volcanol Geotherm Res 139:295–313

    Google Scholar 

  • Shane P, Nairn IA, Smith VC, Darragh M, Beggs K, Cole JW (2008) Silicic recharge of multiple rhyolite magmas by basaltic intrusion during the 22.6 ka Okareka Eruption Episode, New Zealand. Lithos 103:527–549

    Google Scholar 

  • Smith VC, Shane P, Nairn IA (2005) Trends in rhyolite geochemistry, mineralogy, and magma storage during the last 50 kyr at Okataina and Taupo volcanic centres, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 148:372–406

    Google Scholar 

  • Stewart RB, Price RC, Smith IEM (1996) Evolution of high-K arc magma, Egmont Volcano, Taranaki, New Zealand: evidence from mineral chemistry. J Volcanol Geotherm Res 74:275–295

    Google Scholar 

  • Swanson SE, Nye CJ, Miller TP, Avery VF (1994) Geochemistry of the 1989–1990 eruption of Redoubt Volcano: Part II. Evidence from mineral and glass chemistry. J Volcanol Geotherm Res 62:453–468

    Google Scholar 

  • Tappen CM, Webster JD, Mandeville CW, Roderick D (2009) Petrology and geochemistry of ca. 2100–1000 a.B.P. magmas of Augustine volcano, Alaska, based on analysis of prehistoric pumiceous tephra. J Volcanol Geotherm Res 183:42–62

    Google Scholar 

  • Thomas W, Ernst WG (1990) The aluminum content of hornblende in calc-alkaline granitic rocks; a mineralogic barometer calibrated experimentally to 12 kbars In: Spencer RJ, Chou I-M (eds) Fluid–mineral interactions: a tribute to H.P. Eugster. Geochem Soc Spec Publ 2:59–63

  • Thornber CR, Pallister JS, Lowers HA, Rowe MC, Mandeville CW, Meeker GP (2008) Chemistry, mineralogy, and petrology of amphibole in Mount St. Helens 2004–2006 dacite. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, chap 32. US Geological Survey Professional Paper 2007–2008, pp 27

  • Toya N, Ban M, Shinjo R (2005) Petrology of Aoso volcano, northeast Japan arc: temporal variation of the magma feeding system and nature of low-K amphibole andesite in the Aoso-Osore volcanic zone. Contrib Mineral Petrol 148:566–581

    Google Scholar 

  • Ujike O, Stix J (2000) Geochemistry and origins of Ueno and On-take basaltic to andesitic rocks (<3 Ma) produced by distinct contributions of subduction components, Central Japan. J Volcanol Geotherm Res 95:49–64

    Google Scholar 

  • Umakoshi K, Shimizu H, Matsuwo N (2001) Volcano-tectonic seismicity at Unzen Volcano, Japan, 1985–1999. J Volcanol Geotherm Res 112:117–131

    Google Scholar 

  • Venezky DY, Rutherford MJ (1999) Petrology and Fe–Ti oxide reequilibration of the 1991 Mount Unzen mixed magma. J Volcanol Geotherm Res 89:213–230

    Google Scholar 

  • Viozzi P (2008) Studio petrografico e geochimico dei prodotti del vulcano Iriga (Luzon Meridionale, Filippine): successioni laviche affioranti e clasti lavici nel deposito di “Debris Avalanche”. Unpublished Master Degree thesis (In Italian), Università di Urbino, pp 94

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240

    Google Scholar 

  • Wolf K, Eichelberger JC (1997) Syneruptive mixing, degassing, and crystallization at Redoubt Volcano, eruption of December, 1989 to May 1990. J Volcanol Geotherm Res 75:19–37

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by MIUR-FIRB (Italy) project n. RBAU01LHEE_002 (resp. A.R.) and grants from Faculty of Science and Technology of the University of Urbino. We are particularly grateful to M. Fokin for critical reading of the manuscript. I. Di Carlo and J. D. Webster are acknowledged for the help in the selection of the experimental results for this work. Suggestions and comments of the two reviewers (B. Scaillet and an anonymous referee) and of the executive editor J. Blundy were appreciated and strongly contributed to the improvement of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Ridolfi.

Additional information

Communicated by J. Blundy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 222 kb)

Supplementary material 2 (XLS 1248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ridolfi, F., Renzulli, A. & Puerini, M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160, 45–66 (2010). https://doi.org/10.1007/s00410-009-0465-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0465-7

Keywords

Navigation