Skip to main content
Log in

Geochemistry and zircon U–Pb ages of the Paleoproterozoic ultramafic rocks of the Mbi Valley, Boali area, Central African Republic

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

This paper investigates the geochemistry of bulk rock and infers the petrogenesis of ultramafic rocks in the Boali Precambrian terrane in Mbi Valley, in the North of the Central African Republic (CAR). The studied rocks comprise coarse primary olivine and orthopyroxene relics (dominant phase), magnesio-hornblende, magnetite, and antigorite. Whole-rock analysis indicates low SiO2 (average of 43.14 wt%) and high MgO (19.84–26.98 wt%) contents and their Mg number (Mg#) ranges from 74 to 82. They display high Ni (526–865 ppm), Cr (1500–3680 ppm) contents. AFM (Na2O-K2O)-FeO-MgO) and ACM (Al2O3-CaO-MgO) ternary diagrams have revealed that the studied samples correspond to arc-related ultramafic cumulates. Chondrite-normalized REE plots display an increasing trend from La to Sm (CeN/SmN: 0.74–1.81), weak negative to no Eu (Eu/Eu* = 0.72–1.05) and strong negative Ce (Ce/Ce* = 0.33–0.98) anomalies. Primitive mantle normalized of multi-element diagrams exhibit LREE enrichment and large ion lithophile elements (LILE) relative to high field strength elements (HFSE), and notable negative anomalies in Nb. This suggests the generation of the parent melt by slab dehydration and wedge melting processes. In addition, incompatible trace element composition and ratios assumed that the source magma had an enhanced mantle source associated with a prominent influence of continental crust. Metasomatism of mantle wedge by plate-dehydrated, LILE-rich fluids and the incorporation of sediments derived from subduction explain the enhancement of the source. Integrated major and trace element compositions jointly with the tectonic reconstruction of this region and LA-ICP-MS U–Pb data on zircon constrain the emplacement age at ca. 2099 Ma in a continental margin arc setting involving subduction of an oceanic plate beneath the continental lithosphere, dehydration of the slab and mantle wedge melting. This result intimate that the remnants of Paleoproterozoic oceanic crust or subduction event and subsequent basins closure extended from the Congo craton in Cameroon to CAR and NE Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Mapoka et al. (2010). ASZ: Cameroon Central Shear Zone = CCSZ; SF: Sanaga fault; SL: São Luis Craton; Pa: Patos shear zone; Pe: Pernambuco shear zone; TBF: Tibati-Banyo-Foumban fault. BOF: Bétaré Oya Fault. Red rectangle: study area

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

taken from Chin et al. (2018)

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

source in c: Average Pelitic Sediments (APS) (Taylor and McLennan 1985); N-MORB (Sun and McDonough 1989)

Fig. 14

source is marked beside the curves

Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aguilara C, Alkmima FF, Lanaa C, Farinaa F (2017) Paleoproterozoic assembly of the São Francisco craton, SE Brazil: New insights from U-Pb titanite and monazite dating. Precambrian Res 289:95–115

    Article  Google Scholar 

  • Ahmad T, Deb M, Tarney J, Raza M (2008) Proterozoic mafic volcanism in the Aravalli-Delhi Orogen, North-western India: geochemistry and tectonic framework. J Geol Soc India 72:93–111

    Google Scholar 

  • Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG (2000) Petrogenetic evolution of late cenozoic, postcollision volcanism in western Anatolia, Turkey. J Volcanol Geotherm Res 102:67–95

    Article  Google Scholar 

  • Arndt NT, Coltice N, Helmstaedt H, Gregoire M (2009) Origin of Archean subcontinental lithospheric mantle: Some petrological constraints. Lithos 109(1–2):61–71

    Article  Google Scholar 

  • Barr SR, Temperley S, Tarney J (1999) Lateral growth of the continental crust through deep level subduction–accretion: a reevaluation of central Greek Rhodope. Lithos 46:69–94

    Article  Google Scholar 

  • Berger J, Caby R, Liegeois JP, Mercier JCC, Demaiffe D (2011) Deep inside a Neoproterozoic intra-oceanic arc: growth, differentiation and exhumation of the Amalaoulaou complex (Gourma, Mali). Contrib Mineral Petrol 162:773–796

    Article  Google Scholar 

  • Bouyo Houketchang M, Penaye J, Mouri H, Toteu SF (2019) Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: Mineralogical evidence and implications for a high-pressure metamorphism related to a subduction zone at the NW margin of the Archean Congo craton. J Afr Earth Sci 149:215–234

    Article  Google Scholar 

  • Brunet D, Machetel P (1998) Large scale tectonic features induced by mantle avalanches with phase, temperature and pressure lateral variations of viscosity. J Geophys Res 103:4929–4945

    Article  Google Scholar 

  • Caby R, Sial AN, Arthaud M, Vauchez A (1991) Crustal evolution and the Brasiliano orogeny in northeast Brazil. In: Dallmeyer RD, Lécorché JP (eds) the west African orogens and circum-atlantic correlatives. Springer, Berlin, pp 373–397

    Chapter  Google Scholar 

  • Caxito ADF, Montefalco de Lira Santos LC, Ganade EC, Bendaoud A, El-Hocine F, Bouyo HM (2020) Toward an integrated model of geological evolution for NE Brazil-NW Africa: The Borborema Province and its connections to the Trans-Saharan (Benino-Nigerian and Tuareg shields) and Central African orogens. Braz J Geol. https://doi.org/10.1590/2317-4889202020190122

    Article  Google Scholar 

  • Chin EJ, Shimizu K, Bybee GM, Erdman ME (2018) On the development of the calc-alkaline and tholeiitic magma series: a deep crustal cumulate perspective. Earth Planet Sci Lett 482:277–287

    Article  Google Scholar 

  • Coleman RG (1977) Ophiolites: ancient oceanic lithosphere? Springer, Berlin

    Book  Google Scholar 

  • Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection. Earth Planet Sci Lett 163:97–108

    Article  Google Scholar 

  • Condie KC (2003) Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time. Geochem Geophys Geosyst 4(1):1–28

    Article  Google Scholar 

  • Cornacchia M, Dars R (1983) Un trait structural majeur du continent Africain. Les linéaments centrafricains du Cameroun au Golfe d’Aden. Bull Soc Géol France XIV 1:101–109

    Article  Google Scholar 

  • Cornacchia M, Giorgi L (1989) Discordances majeures et magmatisme des séries précambriennes de la région de Bogoin. (Centre Ouest de la République centrafricaine). J Afr Earth Sci 9:221–226

  • Cornacchia M, Giorgi L, Caruba C, Vivrier G (1989) Existence d’une zone de suture sur la marge Nord du craton congolais (secteur de Bangui, centre de la République centrafricaine). C R Acad Sci Paris 308(2):107–110

    Google Scholar 

  • Danguene PEY, Ngnotue T, Ganno S, Biandja J, Kankeu B, Nzenti JP (2014) Paleoproterozoic Synkinematic Magnesian High-K Magmatism from the Tamkoro-Bossangoa Massif, along the Bossangoa-Bossembele Shear Zone in North-Western Central African Republic. J Geosci Geomat 2(4):151–164

    Google Scholar 

  • Dostal J, Dupuy C, Caby R (1994) Geochemistry of the Neoproterozoic Tilemsi belt of Iforas (Mali, Sahara)—a crustal section of an oceanic island-arc. Precambrian Res 65:55–69

    Article  Google Scholar 

  • Duncan RA, Green DH (1987) The genesis of refractory melts in the formation of oceanic crust. Contrib Miner Petrol 96:326–342

    Article  Google Scholar 

  • Eggins SM (1993) Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contrib Miner Petrol 114:79–100

    Article  Google Scholar 

  • Ewart A (1982) The mineralogy and petrology of Tertiary—recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range. In: Thorpe RS (ed) Andesites: orogenic andesites and related rocks. Wiley, Chichester, pp 26–87

    Google Scholar 

  • Gérard G, Gérard J (1953) Carte géologique de reconnaissance au 1/500 000. Feuille Berbérati Est avec notice explicative. DGM. A.E.F-Brazaville.

  • Green NL (2006) Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system. Lithos 87:23–49

    Article  Google Scholar 

  • Heaman ML (1997) Global mafic magmatism at 2.45 Ga: remnants of an ancient large igneous province? Geology 25:299–302

    Article  Google Scholar 

  • Hess PC (1989) Origins of igneous rocks. Harvard University Press, London

    Google Scholar 

  • Hickey RL, Frey FA (1982) Geochemical characteristics of boninite series volcanics: implications for their source. Geochim Cosmochim Acta 46:2099–2115

    Article  Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34–41S): trace element and isotopic evidence for contributions from subducted oceanic crust. J Geophys Res 91:5963–5983

    Article  Google Scholar 

  • Jackson S, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation—inductively coupled plasma—mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jenner GA, Dunning GR, Malpas J, Brown M, Brace T (1991) Bay of Islands and Little Port complexes, revisited age, geochemical and isotopic evidence confirm suprasubduction- zone origin. Can J Earth Sci 28:1635–1652

    Article  Google Scholar 

  • Kerrich R, Polat A, Wyman DA, Hollings P (1999) Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province: implications for Archean mantle Reservoirs and greenstone belt genesis. Lithosphere 46:163–187

    Google Scholar 

  • Khanna TC, Sesha Sai VV, Bizimis M, Krishna AK (2016) Petrogenesis of ultramafics in the Neoarchean Veligallu greenstone terrane, eastern Dharwar craton, India: constraints from bulk-rock geochemistry and Lu-Hf isotopes. Precambrian Res 285:186–201

    Article  Google Scholar 

  • Kimura JI, Sakae S (2012) Reactive melt flow as the origin of residual mantle lithologies and basalt chemistries in Mid-Ocean Ridges: implications from the Red Hills Peridotite, New Zealand. J Petrol 53(8):1637–1671

    Article  Google Scholar 

  • Kimura JI, Gill JB, Skora S, Keken PEV, Kawabata H (2016) Origin of geochemical mantle components: role of subduction filter. Geochem Geophys Geosyst 17:3289–3325

    Article  Google Scholar 

  • Kusky TM, Stern RJ, Dewey JF (2013) Secular changes in geologic and tectonic processes, Introduction to Kusky TM, Stern RJ, Dewey JF secular changes in geologic and tectonic processes. Special Issue Gondwana Res 24:451–452

    Article  Google Scholar 

  • La Flèche MR, Camire G, Jenner GA (1998) Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Quebec, Canada. Chem Geol 148:115–136

    Article  Google Scholar 

  • Lavreau J, Poidevin JL, Ledent D, Liegeois JP, Weis D (1990) Contribution to the geochronology of the basement of Central African Republic. J Afr Earth Sci 11(1–2):69–82

    Article  Google Scholar 

  • Le Roux V, Lee CTA, Turner SJ (2010) Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle. Geochim Cosmochim Acta 74:2779–2796

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Charles Gilbert M, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird JO, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: Report of the Subcommittee on amphiboles of The International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Mineral 35:219–246

    Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  • Loose D, Schenk V (2018) 2.09 Ga old eclogites in the Eburnean-Transamazonian orogen of southern Cameroon: significance for Palaeoproterozoic plate tectonics. Precambrian Res 304:1–11

    Article  Google Scholar 

  • Manikyamba C, Kerrich R, Naqvi SM, Ram Mohan M (2004) Geochemical systematic of tholeiitic basalts from the 2.7 Ga Ramagiri-Hundgund composite greenstone belt, Dharwar craton. Precambrian Res 134:21–39

    Article  Google Scholar 

  • Manikyamba C, Kerrich R, Khanna TC, Satyanarayanan M, Krishna AK (2009) Enriched and depleted arc basalts, with Mg- andesites and adakites: a potential paired arc- back-arc of the 2.6 Ga Hutti greenstone terrane, India. Geochim Cosmochim Acta 73:1711–1736

    Article  Google Scholar 

  • Mapoka H, Danguéné YPE, Nzenti JP, Biandja J, Kankeu B, Suh CE (2010) Major structural features and the tectonic evolution of the Bossangoa-Bossembele basement, Northwestern Central African Republic. Open Geol J 4:100–111

    Google Scholar 

  • Marriner GF, Millward D (1984) The petrology and geochemistry of cretaceous to recent volcanism in Colombia: the magmatic history of an accretionary plate margin. J Geol Soc Lond 141:473–486

    Article  Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Article  Google Scholar 

  • McTaggart KC (1971) On the origin of ultramafic rocks. Geol Soc Am Bull 82(1):23–42

    Article  Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Mineral Petrol 39:55–76

    Article  Google Scholar 

  • Morimoto N (1989) Nomenclature of pyroxenes. Can Mineral 27:143–156

    Google Scholar 

  • Munker C, Wörner G, Yogodzinski G, Churikova T (2004) Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas. Earth Planet Sci Lett 224:275–293

    Article  Google Scholar 

  • Nga Essomba TP, Ganno S, Tanko NEL, Ndema MJL, Kamguia Woguia B, Soh TL, Nzenti JP (2020) Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the Paleoproterozoic Nyong series, Eseka area. SW Cameroon Acta Geochim 39(3):404–422

    Article  Google Scholar 

  • Nzenti JP (1994). L’Adamaoua panafricain (région de Banyo) une zone clé pour un modèle géodynamique de la chaîne panafricaine nord équatoriale au Cameroun. Thèse Doctorat d’Etat Université Cheick Anta Diop-Université de Nancy I

  • Nzenti JP, Njiosseu TEL, Nzina NA (2007) The metamorphic evolution of the Paleoproterozoic high grade Banyo gneisses (Adamawa, Cameroon, Central Africa). J Cameroon Acad Sci 7:95–109

    Google Scholar 

  • Nzepang Tankwa M, Ganno S, Akindeji OO, Njiosseu Tanko TEL, Soh Tamehe L, Kamguia Woguia B, Mbita MAS, Nzenti JP (2021) Petrogenesis and tectonic setting of the Paleoproterozoic Kelle Bidjoka iron formations, Nyong group greenstone belts, southwestern Cameroon. Constraints from petrology, geochemistry, and LA-ICP-MS zircon U-Pb geochronology. Int Geol Rev 63:1737–1757

    Article  Google Scholar 

  • Owona S, Ratschbacher L, Nsangou NM, Gulzar AM, Mvondo OJ, Ekodeck GE (2021) How diverse is the source? Age, provenance, reworking, and overprint of Precambrian meta-sedimentary rocks of West Gondwana, Cameroon, from zircon U-Pb geochronology. Precambrian Res 359:106–220

    Article  Google Scholar 

  • Pearce TH (1968) A contribution to the theory of variation diagrams. Contrib Miner Petrol 19:142–157

    Article  Google Scholar 

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) In continental basalts and mantle xenoliths. Shiva Publishing, Nantwich, pp 230–249

    Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci Lett 19:290–300

    Article  Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Miner Petrol 69:33–47

    Article  Google Scholar 

  • Pearce JA, Thirlwall MF, Ingram G, Murton BJ, Arculus RJ, Van der Laan SR (1992). Isotopic evidence for the origin of Boninites and related rocks drilled in the Izu-Bonin (Ogasawara) forearc, Leg 125. In: Fryer P, Pearce JA, Stokking L (eds),Proceedings of the ocean drilling program. Scientific results, vol 125, pp 237–261

  • Peate DW, Pearce JA, Hawkesworth CJ, Colley H, Edwards CMH, Hirose K (1997) Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition. J Petrol 38:1331–1358

    Article  Google Scholar 

  • Pidgeon RT (1992) Recrystallization of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Mineral Petrol 110:463–472

    Article  Google Scholar 

  • Pin C, Poidevin JL (1987) U-Pb zircon evidence of Pan-African granulites facies metamorphism in Central African Republic. A new interpretation of the high-grade series of the northern border of the Congo craton. Precambrian Res 36:302–312

    Article  Google Scholar 

  • Poidevin JL (1991) Les ceintures de roches vertes de la république centrafricaine (Mbomou, Bandas, Boufoyo, Bogoin). Contribution à la connaissance du Précambrien du Nord du craton du Congo. Thèse Doctorat Etat, Université Blaise Pascal, Clermont-Ferrand II (in French)

  • Polat A, Hofmann AW, Rosing MT (2002) Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem Geol 184:231–254

    Article  Google Scholar 

  • Polat A, Appel PW, Fryer BJ (2011) An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth. Gondwana Res 20:255–283

    Article  Google Scholar 

  • Polat A, Fryer B, Samson IM, Weisener C, Appel PWU, Frei R, Windley BF (2012) Geochemistry of ultramafic rocks and hornblendite veins in the Fiskenæsset layered anorthosite complex, SW Greenland: evidence for hydrous upper mantle in the Archean. Precambrian Res 214–215:124–153

    Article  Google Scholar 

  • Reagan MK, Hannan BB, Heizler MT, Hartman BS, Hickey-Vargas R (2008) Petrogenesis of volcanic rocks from Saipan and Rota, Mariana Islands, and implications for the evolution of Nascent Island arcs. J Petrol 49:441–464

    Article  Google Scholar 

  • Roberts MP, Pin C, Clemens JD, Paquette J (2000) Petrogenesis of mafic to felsic plutonic rock associations: the Calc-alkaline Quérigut complex, French Pyrenees. J Petrol 41:809–844

    Article  Google Scholar 

  • Rogers JJW (1996) A history of continents in the past three billion years. J Geol 104:91–107

    Article  Google Scholar 

  • Rolin P (1992) Présence d’un chevauchement ductile majeur d’âge panafricain dans la partie centrale de la République centrafricaine: résultats préliminaires. Comptes Rendus Académie Sciences Paris 315(2):467–470 (in French)

    Google Scholar 

  • Rollinson HR (2014) Using geochemical data: evaluation, presentation, interpretation. Routledge, Abingdon

    Book  Google Scholar 

  • Rollinson H, Pease V (2021) Using major element data. In: Using geochemical data to understanding geological process, 2nd ed. Cambridge University Press, pp 49–95

  • Rudnick RL (1995) Making continental crust. Nature 378:571–578

    Article  Google Scholar 

  • Saunders AD, Norry MJ, Tarney J (1991) Fluid influence on the trace element compositions of subduction zone magmas. Philos Trans R Soc Lond Ser A 335:377–392

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Sláma J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plesovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Soh Tamehe L, Wei C, Ganno S, Rosiere CA, Nzenti JP, Ebotehouna CG, Lu G (2021) Depositional age and tectonic environment of the Gouap banded iron formations from the Nyong group, SW Cameroon: insights from isotopic, geochemical and geochronological studies of drillcore sample. Geosci Front 12:549–572

    Article  Google Scholar 

  • Srivastava RK, Ahmad T (2008) Precambrian mafic magmatism in the Indian Shield: an introduction. J Geol Soc India 72:9–13

    Google Scholar 

  • Srivastava RK, Gautam GC (2009) Precambrian mafic magmatism in the Bastar Craton. J Geol Soc India 73:52–72

    Article  Google Scholar 

  • Stein M, Hofmann AW (1994) Mantle plumes and episodic crustal growth. Nature 372:63–68

    Article  Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22:319–351

    Article  Google Scholar 

  • Stern RJ, Johnson P (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic and geophysical synthesis. Earth-Sci Rev 101:29–67

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geological Society of London, Special Publication, 42, pp 313–345

  • Tanko Njiosseu EL, Danguene PE, Ngnotue T, Ganno S, Kouankap NGD, Ngo Nlend CD, Kankeu B, Biandja J, Nzenti JP (2021) Petrology and geochronology of metamorphic rocks from the Bossangoa-Bossembélé area, Northern Central African Republic: evidence for Palaeoproterozoic high-grade metamorphism in the North Equatorial Fold Belt. Arab J Geosci 14:1660

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: Its composition and evolution. Blackwell Scientific Publication, Carlton

    Google Scholar 

  • Tchouankoué JP, Tchato Tchaptchet DP, Nyassa LM, Dieugnou NJ, Feudjou C, Maffo C, Tchato CF, Bikes N, Xian-Hua LI (2021) Evidence for a 206Ga subduction at the western border of the Adamawa-Yade domain in Cameroon: constraints from elemental geochemistry, zircon Hf isotopes and zircon U/Pb geochronology from Ititin metabasites. J Afr Earth Sci 175:104001

    Article  Google Scholar 

  • Teixeira W, Cordani UG (2008) Proterozoic evolution of the Amazonian Craton reviewed. Indian J Geol 80:115–137

    Google Scholar 

  • Thrope RS, Francis PW, O’Callaghan L (1984) Relative roles of source composition, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks. Philos Trans R Soc Lond Ser A 310:675–692

    Article  Google Scholar 

  • Turner S, Caulfield J, Turner M, Keken P, Maury R, Sandiford M, Prouteau G (2012) Recent contribution of sediments and fluids to the mantle’s volatile budget. Nat Geosci 5:50–54

    Article  Google Scholar 

  • Weaver BL (1991) The origin of ocean island basalt end member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397

    Article  Google Scholar 

  • Weil AB, Vander VR, Mac Niocaill C, Meert JG (1998) The Proterozoic supercontinent Rodinia: paleomagnetically derived reconstructions for 1100–800 Ma. Earth Planet Sci Lett 154:13–24

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis a global tectonic approach. Unwin Hyman, London

    Book  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Wyllie PJ (1967) Ultramafic and related rocks. Wiley, New York

    Google Scholar 

  • Yuan L, Zhang X, Yang Z, Lu Y, Chen H (2017) Paleoproterozoic Alaskan-type ultramafic-mafic intrusions in the Zhongtiao mountain region, North China Craton: Petrogenesis and tectonic implications. Precambrian Res 296:39–61

    Article  Google Scholar 

  • Zhaochong Z, Mahoney JJ, Jingwen M, Fusheng W (2006) Geochemistry of picritic and associated basalt flows of the western Emeishan flood Basalt Province, China. J Petrol 47(10):1997–2019

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support of SCAC (Service de la Coopération et d’Action Culturelle) Bangui and support from Professor Paul Asimow of California Institute of Technology, USA for providing EPMA data, and from Dr. Landy Soh Tamehe of the School of Geosciences and Info-Physics, Central South University, China for helping in zircon U–Pb data acquisition.

Authors confirmation

All the authors have participated to the manuscript and agree with the final conclusions. You can contact each author separately for confirmation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evine Laure Njiosseu Tanko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanko, E.L.N., Danguene, P.E., Tsoungui, P.N.E. et al. Geochemistry and zircon U–Pb ages of the Paleoproterozoic ultramafic rocks of the Mbi Valley, Boali area, Central African Republic. Acta Geochim 41, 515–535 (2022). https://doi.org/10.1007/s11631-022-00540-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-022-00540-3

Keywords

Navigation