Skip to main content
Log in

Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the Paleoproterozoic Nyong series, Eseka area, SW Cameroon

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Serpentinized rocks closely associated with Paleoproterozoic eclogitic metabasites were recently discovered at Eseka area in the northwestern edge of the Congo craton in southern Cameroon. Here, we present new field data, petrography, and first comprehensible whole-rock geochemistry data and discuss the protolith and tectonic significance of these serpentinites in the region. The studied rock samples are characterized by pseudomorphic textures, including mesh microstructure formed by serpentine intergrowths with cores of olivine, bastites after pyroxene. Antigorite constitutes almost the whole bulk of the rocks and is associated (to the less amount) with tremolite, talc, spinel, and magnetite. Whole-rock chemistry of the Eseka serpentinites led to the distinction of two types. Type 1 has high MgO (> 40 wt%) content and high Mg# values (88.80) whereas Type 2 serpentinite samples display relatively low MgO concentration and Mg# values (< 40 and 82.88 wt%, respectively). Both types have low Al/Si and high Mg/Si ratios than the primitive mantle, reflecting a refractory abyssal mantle peridotite protolith. Partial melting modeling indicates that these rocks were derived from melting of spinel peridotite before serpentinization. Bulk rock high-Ti content is similar to the values of subducted serpentinites (> 50 ppm). This similarity, associated with the high Cr contents, spinel-peridotite protolith compositions and Mg/Si and Al/Si ratios imply that the studied serpentinites were formed in a subduction-related environment. The U-shaped chondrite normalized-REE patterns of serpentinized peridotites, coupled with similar enrichments in LREE and HFSE, suggest the refertilized nature due to melt/rock interaction prior to serpentinization. Based on the results, we suggest that the Eseka serpentinized peridotites are mantle residues that suffered a high degree of partial melting in a subduction-related environment, especially in Supra Subduction Zone setting. These new findings suggest that the Nyong series in Cameroon represents an uncontested Paleoproterozoic suture zone between the Congo craton and the São Francisco craton in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arndt NT (1994) Archean komatiites. In: Condie KC (ed) Archean crustal evolution. Elsevier, Amsterdam, pp 11–44

    Google Scholar 

  • Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M (2004) Seawater peridotite interactions: first insights from ODP Leg 209, MAR 15 N. Geochem Geophys Geosyst. https://doi.org/10.1029/2004GC000744

    Article  Google Scholar 

  • Ballhaus C, Ryan CG (1995) Platinum-group elements in the Merenskey Reef. 1. PGE in base metal sulfides and the down temperature equilibrium history of Merensky ores. Contrib Mineral Petrol 122(3):241–251

    Google Scholar 

  • Bau M, Dulski P (1999) Comparing yttrium and rare earths in hydrothermal fluids from the mid-atlantic ridge: implications for Y and REE behaviour during near vent mixing and for the Y/Ho ratio of proterozoic seawater. Chem Geol 155:77–90

    Google Scholar 

  • Bhat IM, Ahmad T, Subba Rao DV (2017) Geochemical characterization of serpentinized peridotites from the Shergol ophiolitic slice along the Indus Suture Zone (ISZ), Ladakh Himalaya. India J Geol 125:501–513

    Google Scholar 

  • Bhat IM, Ahmad T, Subba Rao DV (2019) Origin and evolution of Suru Valley ophiolite peridotite slice along Indus suture zone, Ladakh Himalaya, India: implications on melt-rock rock interaction in a subduction-zone environment. Chem Erde 79(1):78–93

    Google Scholar 

  • Bodinier JL, Godard M (2003) Orogenic, ophiolitic and abyssal peridotites. In: Carlson RW (ed) Treatise on geochemistry Vol 2 The mantle and core. Amsterdam, Elsevier, pp 103–170

    Google Scholar 

  • Bodinier JL, Vasseur G, Vernieres J, Dupuy C, Fabries J (1990) Mechanism of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotites. J Petrol 31:597–628

    Google Scholar 

  • Bonatti E, Michael PJ (1989) Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth Planet Sci Lett 91:297–311

    Google Scholar 

  • Boschi C, Früh-Green GL, Escartín J (2006) Occurrence and significance of serpentinite-hosted, talc- and amphibole-rich fault rocks in modern oceanic settings and ophiolite complexes: an overview. Ofioliti 31(2):129–140

    Google Scholar 

  • Bouyo Houketchang M, Penaye J, Mouri H, Toteu SF (2019) Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: mineralogical evidence and implications for a high-pressure metamorphism related to a subduction zone at the NW margin of the Archean Congo craton. J Afr Earth Sc 149:215–234

    Google Scholar 

  • Cannaò E, Scambelluri M, Agostini S, Tonarini S, Godard M (2016) Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: the Voltri Massif case study (Ligurian Western Alps, Italy). Geochim Cosmochim Acta 190:115–133

    Google Scholar 

  • Coleman RG (1977) Ophiolites, ancient oceanic litosphere? rocks and minerals, vol 12. Springer, Berlin

    Google Scholar 

  • Coleman RG, Keith TE (1971) A chemical study of serpentinization-Burro Mountain, California. J Petrol 12:311–328

    Google Scholar 

  • Deer WR, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Longman Scientific & Technical, Harlow

    Google Scholar 

  • Deschamps F, Guillot S, Godard M, Chauvel C, Andreani M, Hattori K (2010) In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chem Geol 269:262–277

    Google Scholar 

  • Deschamps F, Godard M, Guillot S, Hattori K (2013) Geochemistry of subduction zone serpentinites. A review. Lithos 178:96–127

    Google Scholar 

  • Deshmukh SD, Hari KR, Diwan P, Manu Prasanth MP (2018) Geochemistry and petrogenesis of felsic meta-volcanic rocks of Baghmara Formation, Sonakhan Greenstone Belt, Central India. J Geosci Res 2(1):69–74

    Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Miner Petrol 86:54–76

    Google Scholar 

  • Evans BW, Hattori K, Baronnet A (2013) Serpentinite: what, why, where? Elements 9:99–106

    Google Scholar 

  • Fruh-Green GL, Connolly JAD, Plas A, Kelley DS, Grobety B (2004) Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. The subseafloor biosphere at mid-ocean ridges. Geophys Monogr Ser 144:119–136

    Google Scholar 

  • Gamal El Dien H, Hamdy M, Abu El-Ela AS, Abu-Alam T, Hassan A, Kil Y, Mizukami T, Soda Y (2016) Neoproterozoic serpentinites from the Eastern Desert of Egypt: insights into Neoproterozoic mantle geodynamics and processes beneath the Arabian-Nubian Shield. Precambrian Res 286:213–233

    Google Scholar 

  • Ganno S, Njiosseu Tanko EL, Kouankap Nono GD, Djoukouo Soh A, Moudioh C, Ngnotué T, Nzenti JP (2017) A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: constraints from petrography and geochemistry. Ore Geol Rev 80:860–875

    Google Scholar 

  • Ganno S, Tsozué D, Kouankap Nono GD, Tchouatcha MS, Ngnotué T, Takam GR, Nzenti JP (2018) Geochemical Constraints on the Origin of Banded Iron Formation-Hosted Iron Ore from the Archaean Ntem Complex (Congo Craton) in the Meyomessi Area, Southern Cameroon. Resour Geol 68(3):287–302

    Google Scholar 

  • Hart SR, Zindler A (1986) In search of a bulk-Earth composition. Chem Geol 57:247–267

    Google Scholar 

  • Hattori KH, Guillot S (2003) Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology 31(6):525–528

    Google Scholar 

  • Hattori KH, Guillot S (2007) Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochem Geophys Geosyst 8(9):Q09010

    Google Scholar 

  • Hilairet N, Reynard B, Wang Y, Daniel I, Merkel S, Nishiyama N, Petitgirad S (2007) High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318:1910–1913

    Google Scholar 

  • Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu–Ogasawara–Mariana forearc. In: Fryer P, Pearce JA, Stokking LB, et al. (Eds) Proceedings of the ocean drilling program. 125, Scientific Results, Cambridge, pp 445–485

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Wänke H, Lorenz V (1979) The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. Lunar Planet Sci Conf Proc 10:2031–2050

    Google Scholar 

  • Jung C, Jung S, Hoffer E, Berndt J (2006) Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel. Germany. Journal of Petrology 47(8):1637–1671

    Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671

    Google Scholar 

  • Kodolányi J, Pettke T, Spandler C, Kamber BS, Gméling K (2011) Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafc input to subduction zones. J Petrol 53(2):235–270

    Google Scholar 

  • Kusky TM, Stern RJ, Dewey JF (2013) Secular changes in geologic and tectonic processes, Introduction to Kusky TM, Stern RJ, Dewey JF secular changes in geologic and tectonic processes. Special Issue of Gondwana Research 24:451–452

  • Lasserre M, Soba D (1976) Age Libérien des granodiorites et des gneiss à pyroxènes du Cameroun Méridional. Bull BRGM 2(4):17–32

    Google Scholar 

  • Le Maître RW (1976) The chemical variability of some common igneous rocks. J Petrol 17:589–637

    Google Scholar 

  • Lerouge C, Cocherie A, Toteu SF, Penaye J, Milesi JP, Tchameni R, Nsifa NE, Fanning CM, Deloule E (2006) Shrimp U/Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-western Cameroon: consequences for the eburnean–transamazonian belt of NE Brazil and central Africa. J Afr Earth Sci 44:413–427

    Google Scholar 

  • Li YH (1991) Distribution patterns of the elements in the ocean: a synthesis. Geochim Cosmochim Acta 55(11):3223–3240

    Google Scholar 

  • Li YH, Schoonmaker J (2003) 7.01 chemical composition and mineralogy of marine sediments. treatise on geochemistry, vol. 7: sediments, diagenesis, and sedimentary rocks. In: Mackenzie FT (ed) Treatise on Geochemistry. Elsevier, Amsterdam, pp 1–35

    Google Scholar 

  • Li X-H, Chen Y, Li J, Yang C, Ling X-X, Tchouankoue JP (2016) New isotopic constraints on age and origin of Mesoarchean charnockite, trondhjemite and amphibolite in the Ntem Complex of NW Congo Craton, southern Cameroon. Precambrian Res 276:14–23

    Google Scholar 

  • Loose D, Schenk V (2018) 2.09 Ga old eclogites in the Eburnian-Transamazonian orogen of southern Cameroon: significance for Palaeoproterozoic plate tectonics. Precambrian Res 304:1–11

    Google Scholar 

  • Maffione M, Morris A, Plumper O, Van Hinsbergen DJJ (2014) Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes. Geochem Geophys Geosyst 15:923–944

    Google Scholar 

  • Maurizot P, Abessolo A, Feybesse JL, Johan LP (1986) Etude de prospection minière du Sud-Ouest Cameroun. Synthèse des travaux de 1978 à 1985. Rapport de BRGM 85:274

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • Metcalf RV, Shervais JW (2008) Suprasubduction-zone ophiolites: is there really an ophiolite conundrum? Geol Soc Am Spec Pap 438:191–222

    Google Scholar 

  • Mével C (2003) Serpentinization of abyssal peridotites atmid-ocean ridges. Comptes Rendus Geosciences 335:825–852

    Google Scholar 

  • Ndema Mbongue J, Ngo Nlend CD, Nzenti JP, Cheo Suh E (2014) Origin and evolution of the formation of the Cameroon Nyong Series in the Western Border of the Congo Craton. J Geosci Geomat 2:62–75

    Google Scholar 

  • Nédélec A, Nsifa EN, Martin H (1990) Major and trace element geochemistry of the Archaean Ntem plutonic complex (South Cameroon): petrogenesis and crustal evolution. Precambrian Res 47:35–50

    Google Scholar 

  • Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45:2423–2458

    Google Scholar 

  • Niu Y, Langmuir CH, Kinzler RJ (1997) The origin of abyssal peridotites: a new perspective. Earth Planet Sci Lett 152:251–265

    Google Scholar 

  • Nockolds SR (1954) Average chemical composition of some igneous rocks. Geol Soc Am Bull 65:1007–1032

    Google Scholar 

  • Nzenti JP, Barbey P, Macaudiere J, Soba D (1988) Origin and evolution of late Precambrian high—grade Yaounde gneisses (Cameroon). Precambrian Res 38:91–109

    Google Scholar 

  • O’Hanley DS (1996) Serpentinites, records of tectonic and petrological history. Oxford Monographs on Geology and Geophysics no 34

  • Parkinson IA, Pearce JA (1998) Peridotite from the Izu-Bonin-Mariana forearc (ODP leg 125) evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J Petrol 39:1577–1618

    Google Scholar 

  • Paulick H, Bach W, Godard M, De HJCM, Surir G, Harvey J (2006) Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15 20′N, ODP Leg 209): implication for fluid/rock interaction in slow spreading environments. Chem Geol 234:179–210

    Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, Chidester, pp 525–548

    Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Google Scholar 

  • Penaye J, Toteu SF, Tchameni R, Van Schmus WR, Tchakounte J, Ganwa A, Minyem D, Nsifa EN (2004) The 2.1 Ga West Central African Belt in Cameroon: extension and evolution. J Afr Earth Sc 39:159–164

    Google Scholar 

  • Peters D, Bretscher A, John T, Scambelluri M, Pettke T (2017) Fluid-mobile elements in serpentinites: constraints on serpentinisation environments and element cycling in subduction zones. Chem Geol 466:654–666

    Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Google Scholar 

  • Polat A, Hofmann AW (2003) Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Res 126:197–218

    Google Scholar 

  • Polat A, Hofmann AW, Rosing M (2002) Boninite-like volcanic rocks in the 3.7-3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the Earth. Chem Geol 184:231–254

    Google Scholar 

  • Pouclet A, Tchameni R, Mezger K, Vidal M, Nsifa EN, Shang CK, Penaye J (2007) Archaean crustal accretion at the northern border of the Congo craton (South Cameroon), The charnockite-TTG link. Bull Geol Soc Fr 178:331–342

    Google Scholar 

  • Rollinson HR (1993) A terrane interpretation of the Archaean Limpopo Belt. Geol Mag 130(6):755–765

    Google Scholar 

  • Salters VJ, Stracke A (2004a) Composition of the depleted mantle. Geochem Geophys Geosyst. https://doi.org/10.1029/2003GC000597

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004b) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):1–27

    Google Scholar 

  • Shang CK, Satir M, Siebel W, Nsifa EN, Taubald H, Liegeois JP, Tchoua FM (2004) Major and trace element geochemistry, Rb–Sr and Sm–Nd systematics of TTG magmatism in the Congo craton: case of the Sangmelima region, Ntem complex, southern Cameroon. J Afr Earth Sci 40:61–79

    Google Scholar 

  • Shang CK, Satir M, Nsifa EN, Liégeois JP, Siebel W, Taubald H (2007) Archaean high-k granitoids produced by remelting of earlier Tonalite-Trondhjemite-Granodiorite (TTG) in the Sangmelima region of the Ntem complex of the Congo craton, southern Cameroon. Int J Earth Sci 96:817–841

    Google Scholar 

  • Shang CK, Liégeois JP, Satir M, Frisch W, Nsifa EN (2010) Late Archaean high-K granite geochronology of the northern metacratonic margin of the Archaean Congo craton, Southern Cameroon: evidence for Pb-loss due to non-metamorphic causes. Gondwana Res 18(2–3):337–355

    Google Scholar 

  • Shervais JW (1982) Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 32:114–120

    Google Scholar 

  • Snow JE, Dick HJB (1995) Pervasive magnesium loss by marine weathering of peridotites. Geochim Cosmochim Acta 59:4219–4235

    Google Scholar 

  • Soh TL, Nzepang Tankwa M, Chongtao W, Ganno S, Ngnotue T, Kouankap Nono GD, Shaamu JS, Zhang J, Nzenti JP (2018) Geology and geochemical constrains on the origin and depositional setting of the Kpwa-Atog Boga banded iron formations (BIFs), northwestern Congo craton, southern Cameroon. Ore Geol Rev 95:620–638

    Google Scholar 

  • Suh CE, Cabral A, Shemang EM, Mbinkar L, Mboudou GGM (2008) Two contrasting iron-ore deposits in the Precambrian mineral belt of Cameroon, West Africa. Explor Min Geol 17:197–207

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Google Scholar 

  • Tchameni R, Mezger K, Nsifa EN, Pouclet A (2001) Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon. Lithos 57:23–42

    Google Scholar 

  • Tchameni R, Lerouge C, Penaye J, Cocherie A, Milesi JP, Toteu SF, Nsifa NE (2010) Mineralogical constraint for metamorphic conditions in a shear zone affecting the Archean Ngoulemakong tonalite, Congo craton (Southern Cameroon) and retentivity of U-Pb SHRIMP zircon dates. J Afr Earth Sc 58:67–80

    Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, Nyobe JB (1994) U-Pb and Sm-Nd evidence for eburnean and pan-African high-grade metamorphism in cratonic rocks of southern Cameroon. Precambrian Res 67:321–347

    Google Scholar 

  • Vicat JP, Leger JM, Nsifa E, Piguet P, Nzenti JP, Tchameni R, Pouclet A (1996) Distinction au sein du craton congolais du Sud-Ouest du Cameroun, de deux épisodes doléritiques initiant les cycles orogéniques éburnéen (Paléoprotérozoïque) et Pan-Africain (Néoprotérozoïque). Comptes Rendus de l’Académie des Sciences Paris 323:575–582

    Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187

    Google Scholar 

  • Wu K, Ding X, Ling MX, Sun W, Zhang LP, Bin HuY, Huang RF (2018) Origins of two types of serpentinites from the Qinling orogenic belt, central China and associated fluid/melt-rock interactions. Lithos 302–303:50–64

    Google Scholar 

Download references

Acknowledgements

This study is a part of the senior authors PhD thesis research work at the University of Yaoundé I. We gratefully acknowledge the editors for the handling of the manuscript. This is the contribution of ICGP-Y 646 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvestre Ganno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nga Essomba Tsoungui, P., Ganno, S., Tanko Njiosseu, E.L. et al. Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the Paleoproterozoic Nyong series, Eseka area, SW Cameroon. Acta Geochim 39, 404–422 (2020). https://doi.org/10.1007/s11631-019-00368-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-019-00368-4

Keywords

Navigation