Skip to main content

Advertisement

Log in

Improving the accumulation of recombinant human serum albumin (HSA) in transgenic tobacco plants by fusion with the N-terminal proline-rich domain of γ-zein (Zera)

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Plants have long played a major role in human health as a source of herbal remedies. Recently, transgenic plants have become convenient bioreactors for the large-scale production of recombinant biopharmaceuticals at affordable prices. Manufacture of human serum albumin (HSA) in transgenic plant tissue is viable as a safe and economical alternative to the plasma fractionation method. Here, we investigated improvement of recombinant HSA accumulation in tobacco by inducing protein body formation via addition of the Zera (N-terminal proline-rich region of maize γ-zein protein) domain. Genetically modified (GM) tobacco plants were regenerated from leaf explants infected with Agrobacterium tumefaciens strains LBA4404 and GV3101 bearing pBI121-HSA or pBI121-Zera-HSA expression vectors. The T1 tobacco plantlets were examined using southern and western blotting to confirm the integration and expression of the transgenes, respectively. The confirmed T1 tobacco plantlets were further analyzed by qualitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The qRT-PCR results demonstrated that rHSA gene was successfully transcribed in tobacco transformants and there was no statistically significant difference between HSA and Zera-HSA transcript levels. Despite the equivalent transcript levels, ELISA results demonstrated a nearly 4-fold increase in accumulation of HSA protein in transformed tobacco when using the Zera domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Arroyo V, García-Martinez R, Salvatella X (2014) Human serum albumin, systemic inflammation, and cirrhosis. J Hepatol 61:396–407

    Article  CAS  Google Scholar 

  • Asif M, Eudes F, Randhawa H, Amundsen E, Yanke J, Spaner D (2013) Cefotaxime prevents microbial contamination and improves microspore embryogenesis in wheat and triticale. Plant Cell Rep 32:1637–1646

    Article  CAS  Google Scholar 

  • Avesani L, Vitale A, Pedrazzini E, DeVirgilio M, Pompa A, Barbante A, Gecchele E, Dominici P, Morandini F, Brozzetti A, Falorni A (2010) Recombinant human GAD65 accumulates to high levels in transgenic tobacco plants when expressed as an enzymatically inactive mutant. Plant Biotechnol J 8:862–872

    Article  CAS  Google Scholar 

  • Balakrishna D, Vinodh R, Madhu P, Avinash S, Rajappa PV, Bhat BV (2019) Tissue culture and genetic transformation in Sorghum bicolor. In: Aruna C, Visarada KBRS, Bhat BV, Tonapi VA (eds) Breeding sorghum for diverse end uses. Woodhead Publishing, pp 115–130

  • Barbosa S, Pablo T, Víctor (2014) Fibrillation and polymorphism of human serum albumin. In: Uversky VN, Lyubchenko YL (eds) Bio-nanoimaging, Academic Press, pp 345–362

  • Beltrán J, Jaimes H, Echeverry M, Ladino Y, López D, Duque MC, Chavarriaga P, Tohme J (2009) Quantitative analysis of transgenes in cassava plants using real-time PCR technology. In Vitro Cell Dev Biol - Plant 45:48–56

    Article  Google Scholar 

  • Bidarigh fard A, Nayeri FD, Anbuhi MH (2019) Transient expression of etanercept therapeutic protein in tobacco (Nicotiana tabacum L.). Int J Biol Macromol 130:483–490

    Article  CAS  Google Scholar 

  • Buyel JF (2018) Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv 36:506–520

    Article  CAS  Google Scholar 

  • Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435

    Article  CAS  Google Scholar 

  • Farran I, Sánchez-Serrano JJ, Medina JF, Prieto J, Mingo-Castel AM (2002) Targeted expression of human serum albumin to potato tubers. Transgenic Res 11:337–346

    Article  CAS  Google Scholar 

  • Fernández-San Millán A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79

    Article  Google Scholar 

  • Fu Q, Li C, Tang M, Tao YB, Pan BZ, Zhang L, Niu L, He H, Wang X, Xu ZF (2015) An efficient protocol for Agrobacterium-mediated transformation of the biofuel plant Jatropha curcas by optimizing kanamycin concentration and duration of delayed selection. Plant Biotechnol Rep 9:405–416

    Article  Google Scholar 

  • Gutiérrez SP, Saberianfar R, Kohalmi SE, Menassa R (2013) Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins. BMC Biotechnol 13:1–11

    Article  Google Scholar 

  • He Y, Ning T, Xie T, Qiu Q, Zhang L, Sun Y, Jiang D, Fu K, Yin F, Zhang W, Shen L, Wang H, Li J, Lin Q, Sun Y, Li H, Zhu Y, Yang D (2011) Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci U S A 108:19078–19083

    Article  CAS  Google Scholar 

  • Husaini AM (2010) Pre-and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Rep 29:97–110

    Article  CAS  Google Scholar 

  • Japelaghi RH, Haddad R, Garoosi G-A (2011) Rapid and efcient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Mol Biotechnol 49:129–137

    Article  CAS  Google Scholar 

  • Joseph M, Ludevid MD, Torrent M, Rofidal V, Tauzin M, Rossignol M, Peltier JB (2012) Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves. BMC Plant Biol 12:1–13

    Article  Google Scholar 

  • Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392

    Google Scholar 

  • Karg SR, Kallio PT (2009) The production of biopharmaceuticals in plant systems. Biotechnol Adv 27:879–894

    Article  CAS  Google Scholar 

  • Kim MJ, An DJ, Moon KB, Cho HS, Min SR, Sohn JH, Jeon JH, Kim HS (2016) Highly efficient plant regeneration and Agrobacterium-mediated transformation of Helianthus tuberosus L. Ind Crop Prod 83:670–679

    Article  CAS  Google Scholar 

  • Kim MJ, Baek K, Park CM (2009) Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Rep 28:1159–1167

    Article  CAS  Google Scholar 

  • Kittur FS, Hung CY, Zhu C, Shajahan A, Azadi P, Thomas MD, Pearce JL, Gruber C, Kallolimath S, Xie J (2020) Glycoengineering tobacco plants to stably express recombinant human erythropoietin with different N-glycan profiles. Int J Biol Macromol 157:158–169

    Article  CAS  Google Scholar 

  • Ko TS, Lee S, Krasnyanski S, Korban SS (2003) Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theor Appl Genet 107:439–447

    Article  CAS  Google Scholar 

  • Llompart B, Llop-Tous I, Marzabal P, Torrent M, Pallissé R, Bastida M, Ludevid MD, Walas F (2010) Protein production from recombinant protein bodies. Process Biochem 45:1816–1820

    Article  CAS  Google Scholar 

  • Llop-Tous I, Ortiz M, Torrent M, Ludevid MD (2011) The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants. PLoS One 6(4):e19474

    Article  CAS  Google Scholar 

  • Matoba N, Davis KR, Palmer KE (2011) Recombinant protein expression in Nicotiana. In: Totowa NJ (eds) Plant Chromosome Engineering, Humana Press, pp 199–219

  • Mittal P, Gosal SS, Senger A, Kumar P (2009) Impact of cefotaxime on somatic embryogenesis and shoot regeneration in sugarcane. Physiol Mol Biol Plants 15:257–267

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

  • Nyaboga E, Tripathi JN, Manoharan R, Tripathi L (2014) Agrobacterium-mediated genetic transformation of yam (Dioscorea rotundata): an important tool for functional study of genes and crop improvement. Front Plant Sci 5:463–463

    Article  Google Scholar 

  • Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222

  • Padilla I, Burgos L (2010) Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Rep 29:1203–1213

    Article  CAS  Google Scholar 

  • Palomo-Ríos E, Barceló-Muñoz A, Mercado JA, Pliego-Alfaro F (2012) Evaluation of key factors influencing Agrobacterium-mediated transformation of somatic embryos of avocado (Persea americana Mill.). Plant Cell Tiss Org Cult 109:201–211

  • Pathi KM, Tula S, Tuteja N (2013) High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium-mediated genetic transformation of tobacco. Plant Signal Behav 8:e24354

    Article  Google Scholar 

  • Pillay P, Schlüter U, van Wyk S, Kunert KJ, Vorster BJ (2014) Proteolysis of recombinant proteins in bioengineered plant cells. Bioengineered 5:15–20

    Article  Google Scholar 

  • Qaim M (2020) Role of new plant breeding technologies for food security and sustainable agricultural development. Appl Econ Persp Policy 42:129–150

    Article  Google Scholar 

  • Reggi S, Marchetti S, Patti T, De Amicis F, Cariati R, Bembi B, Fogher C (2005) Recombinant human acid β-glucosidase stored in tobacco seed is stable, active and taken up by human fibroblasts. Plant Mol Biol 57:101–113

    Article  CAS  Google Scholar 

  • Ryan BJ, Henehan GT (2013) Overview of approaches to preventing and avoiding proteolysis during expression and purification of proteins. Cur Protoc Protein Sci 71:5–25

    Google Scholar 

  • Sedaghati B, Haddad R, Bandehpour M (2019) Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in purslane (Portulaca oleracea L.): an important medicinal plant. Plant Cell Tiss Org Cult 136:231–245

  • Sedaghati B, Haddad R, Bandehpour M (2020) Transient expression of human serum albumin (HSA) in tobacco leaves. Mol Biol Rep 47:7169–7177

    Article  CAS  Google Scholar 

  • Sedaghati B, Haddad R, Bandehpour M (2021) Development of an efficient in-planta Agrobacterium-mediated transformation method for Iranian purslane (Portulaca oleracea L.) using sonication and vacuum infiltration. Acta Physiol Plant 43:1–9

    Article  Google Scholar 

  • Shehata A, Wannarat W, Skirvin R, Norton M (2010) The dual role of carbenicillin in shoot regeneration and somatic embryogenesis of horseradish (Armoracia rusticana) in vitro. Plant Cell Tissue Organ Cult 102:397–402

    Article  CAS  Google Scholar 

  • Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, Van Den Elzen PJ, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Bio/Technology 8:217–221

    CAS  Google Scholar 

  • Silpa P, Roopa K, Thomas TD (2018) Production of plant secondary metabolites: current status and future prospects. In: Kumar N (eds) Biotechnological Approaches for Medicinal and Aromatic Plants, Springer, Singapore, pp 3–25

  • Sun QY, Ding LW, Lomonossoff GP, Sun YB, Luo M, Li CQ, Jiang L, Xu ZF (2011) Improved expression and purification of recombinant human serum albumin from transgenic tobacco suspension culture. J Biotechnol 155:164–172

    Article  CAS  Google Scholar 

  • Swiech K, Picanço-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84:147–153

    Article  CAS  Google Scholar 

  • Torrent M, Llop-Tous I, Ludevid MD (2009) Protein body induction: a new tool to produce and recover recombinant proteins in plants. In: Faye L, Gomord V (eds) Recombinant Proteins from Plants, Humana Press, pp 193–208

  • Vafaee Y, Alizadeh H (2018) Heterologous production of recombinant anti-HIV microbicide griffithsin in transgenic lettuce and tobacco lines. Plant Cell Tiss Org Cult 135:85–97

  • van Zyl AR, Meyers AE, Rybicki EP (2017) Development of plant-produced protein body vaccine candidates for bluetongue virus. BMC Biotechnol 17:1–14

    Google Scholar 

  • Wiebke B, Ferreira F, Pasquali G, Bodanese-Zanettini MH, Droste A (2006) Influence of antibiotics on embryogenic tissue and Agrobacterium tumefaciens suppression in soybean genetic transformation. Bragantia 65:543–551

    Article  CAS  Google Scholar 

  • Xu J, Dolan MC, Medrano G, Cramer CL, Weathers PJ (2012) Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 30:1171–1184

    Article  CAS  Google Scholar 

  • Zhang J, Shi L, Chen H, Sun Y, Zhao M, Ren A, Chen M, Wang H, Feng Z (2014) An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus. Microbiol Res 169:741–748

    Article  CAS  Google Scholar 

Download references

Funding

Cellular and Molecular Biology Research Center at Shahid Beheshti University of Medical Sciences (Grant No. 27457) supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojgan Bandehpour.

Additional information

Editor: Pamela Weathers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedaghati, B., Haddad, R., Bandehpour, M. et al. Improving the accumulation of recombinant human serum albumin (HSA) in transgenic tobacco plants by fusion with the N-terminal proline-rich domain of γ-zein (Zera). In Vitro Cell.Dev.Biol.-Plant 58, 921–930 (2022). https://doi.org/10.1007/s11627-021-10216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-021-10216-x

Keywords

Navigation