Skip to main content

Advertisement

Log in

Engineering Camelina sativa Seeds as a Green Bioreactor for the Production of Affordable Human Pro-insulin that Demonstrates Anti-diabetic Efficacy in Rats

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The current production of recombinant insulin via fermenter-based platforms (Escherichia coli and yeast) could not fulfill its fast-growing commercial demands, thus leading to a great interest in its sustainable large-scale production at low cost using a plant-based system. In the present study, Agrobacterium tumefaciens-mediated nuclear stable genetic transformation of an industrial oilseed crop, Camelina sativa, to express pro-insulin (with three furin endoprotease cleavage sites) fused with cholera toxin B subunit (CTB) in their seeds was successfully achieved for the first time. The bar gene was used as a selectable marker for selecting transformants and producing herbicide-resistant camelina plants. The transformation process involved the infiltration of camelina inflorescences (at flower buds with partially opened flowers) with A. tumefaciens and harvesting the seeds (T0) at maturity. The T0 seeds were raised into the putative T1 plants sprayed with Basta herbicide (0.03%, v/v), and the survived green transformed plants tested positive for pro-insulin and bar genes. A transformation frequency of 6.96% was obtained. The integration and copy number of the pro-insulin transgene and its expression at RNA and protein levels were confirmed in T1 plants using Southern hybridization, semi-quantitative Reverse Transcriptase-Polymerase Chain Reaction (sqPCR), and quantitative real-time Time PCR (qPCR) and western blot analysis, respectively. Enzyme-linked immunosorbent Assay (ELISA) quantified the amount of expressed pro-insulin protein, and its anti-diabetic efficacy was validated in diabetic rats on oral feeding. Transgenic plants integrated the pro-insulin gene into their genomes and produced a maximum of 197 µg/100 mg of pro-insulin (0.804% of TSP) that had anti-diabetic efficacy in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data obtained or analyzed in the present study have been incorporated in this manuscript.

References

  1. WHO. (2021). Diabetes: World Health Organization, 11 November 2021. https://www.who.int› Health topics

  2. WHO. (2022). Diabetes: World Health Organization 24 November 2022 https://www.who.int/health-topics/diabetes#tab=tab_1

  3. Basu, S., Yudkin, J. S., Kehlenbrink, S., Davies, J. I., Wild, S. H., Lipska, K. J., Sussman, J. B., & Beran, D. (2019). Estimation of global insulin use for type 2 diabetes, 2018–30: A microsimulation analysis. The Lancet Diabetes Endocrinology, 7, 25–33. https://doi.org/10.1016/S2213-8587(18)30303-6

    Article  PubMed  Google Scholar 

  4. Bhoria, S., Yadav, J., Yadav, H., Chaudhary, D., Jaiwal, R., & Jaiwal, P. K. (2022). Current advances and future prospects in producing recombinant insulin and other proteins to treat diabetes mellitus. Biotechnology Letters, 44, 643–669. https://doi.org/10.1007/s10529-022-03247-w

    Article  CAS  PubMed  Google Scholar 

  5. Boyhan, D., & Daniell, H. (2011). Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnology Journal, 9, 585–598. https://doi.org/10.1111/j.1467-7652.2010.00582.x

    Article  CAS  PubMed  Google Scholar 

  6. Sims, E. K., Carr, A. L. J., Oram, R. A., DiMeglio, L. A., & Evans-Molina, C. (2021). 100 years of insulin: Celebrating the past, present and future of diabetes therapy. Nature Medicine, 27, 1154–1164. https://doi.org/10.1038/s41591-021-01418-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferrer-Miralles, N., Domingo-Espin, J., Corchero, J. L., Vázquez, E., & Villaverde, A. (2009). Microbial factories for recombinant pharmaceuticals. Microbial Cell Factory, 8, 17. https://doi.org/10.1186/1475-2859-8-17

    Article  CAS  Google Scholar 

  8. Siew, Y. Y., & Zhang, W. (2021). Downstream processing of recombinant human insulin and its analogs production from E. coli inclusion bodies. Bioresource Bioprocess, 8, 65. https://doi.org/10.1186/s40643-021-00419-w

    Article  Google Scholar 

  9. Khan, I., & Daniell, H. (2021). Oral delivery of therapeutic proteins bioencapsulated in plant cells: Preclinical and clinical advances. Current Opinion Colloid Interface Science, 54, 101452. https://doi.org/10.1016/j.cocis.2021.101452

    Article  CAS  Google Scholar 

  10. Sainger, M., Jaiwal, A., Sainger, P. A., Chaudhary, D., Jaiwal, R., & Jaiwal, P. K. (2017). Advances in genetic improvement of Camelina sativa for biofuel and industrial bioproducts. Renewable Sustainable Energy Reviews, 68, 623–637. https://doi.org/10.1016/j.rser.2016.10.023

    Article  CAS  Google Scholar 

  11. Singh, R., Nasim, M., & Tiwari, S. (2014). Camelina sativa: Success of a temperate biofuel crop as intercrop in tropical conditions of Mhow, Madhya Pradesh, India. Current Science, 107, 359–360.

    Google Scholar 

  12. Mondor, M., & Hernández-Álvarez, A. J. (2021). Camelina sativa: Composition, attributes, and applications: A review. European Journal Lipid Science Technology. https://doi.org/10.1002/ejlt.202100035

    Article  Google Scholar 

  13. Yuan, L., & Li, R. (2020). Metabolic engineering a model oilseed Camelina sativa for the sustainable production of high-value designed oils. Frontiers Plant Science, 11, 11. https://doi.org/10.3389/fpls.2020.00

    Article  ADS  Google Scholar 

  14. Lu, C., & Kang, J. (2008). Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Reports, 27, 273–278. https://doi.org/10.1007/s00299-007-0454-0

    Article  CAS  PubMed  Google Scholar 

  15. Liu, X., Brost, J., Hutcheon, C., Guilfoil, R., Wilson, A., Leung, S., Shewmaker, C. K., Rooke, S., Nguyen, T., Kiser, J., & De Rocher, J. (2012). Transformation of the oilseed crop Camelina sativa by Agrobacterium-mediated floral dip and simple large-scale screening of transformants. In Vitro Cellular Development Biology- Plant, 48, 462–468. https://doi.org/10.1007/s11627-012-9459-7

    Article  Google Scholar 

  16. Herman, E. M., & Schmidt, M. A. (2010). Industrial protein production crops: New needs and new opportunities. GM Crops, 1, 2–7. https://doi.org/10.4161/gmcr.1.1.10671

    Article  PubMed  Google Scholar 

  17. Xia, Y. H., Wang, H. L., Ding, B. J., Svensson, G. P., Jarl-Sunesson, C., Cahoon, E. B., Hofvander, P., & Löfstedt, C. (2021). Green chemistry production of codlemone, the sex pheromone of the codling moth (Cydia pomonella), by metabolic engineering of the oilseed crop camelina (Camelina sativa). Journal Chemical Ecology, 47, 950–967. https://doi.org/10.1007/s10886-021-01316-4

    Article  CAS  Google Scholar 

  18. Froger, A., & Hall, J. E. (2007). Transformation of plasmid DNA into E. coli using the heat shock method. Journal Visualized Experiments. https://doi.org/10.3791/253

    Article  Google Scholar 

  19. Yadav, H., Malik, K., Parmar, S., Kumar, S., & Jaiwal, P. K. (2021). Generation of polyclonal antibodies against recombinant Agrobacterium tumefaciens decaprenyl diphosphate synthase produced in Escherichia coli. Journal Plant Biochemistry Biotechnology, 30, 487–495. https://doi.org/10.1007/s13562-020-00635-z

    Article  CAS  Google Scholar 

  20. Jyothishwaran, G., Kotresha, D., Selvaraj, T., Srideshikan, S. M., Rajvanshi, P. K., & Jayabaskaran, C. (2007). A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Current Science, 93, 770–772.

    CAS  Google Scholar 

  21. Rogers, S. O., & Bendich, A. J. (1989). Extraction of DNA from plant tissues. In S. B. Gelvin, R. A. Schilperoort, & D. P. S. Verma (Eds.), Plant molecular biology manual (pp. 73–83). Springer.

    Chapter  Google Scholar 

  22. Nanda, J., Mani, M., Mishra, S. B., & Verma, N. (2023). Antihyperglycemic activity of Plumeria alba Linn leaves extracts in streptozotocin-nicotinamide induced diabetic rats. Biomedical Pharmacology Journal, 16, 567–571.

    Article  CAS  Google Scholar 

  23. Clough, S. J., & Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16, 735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x

    Article  CAS  Google Scholar 

  24. Qing, C. M., Fan, L., Lei, Y., Bouchez, D., Tourneur, C., Yan, L., & Robaglia, C. (2000). Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Molecular Breeding, 6, 67–72. https://doi.org/10.1023/A:1009658128964

    Article  CAS  Google Scholar 

  25. Curtis, I. S., & Nam, H. G. (2001). Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method-plant development and surfactant are important in optimizing transformation efficiency. Transgenic Research, 10, 363–371. https://doi.org/10.1023/A:1016600517293

    Article  CAS  PubMed  Google Scholar 

  26. Wang, W. C., Menon, G., & Hansen, G. (2003). Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Reports, 22, 274–281.

    Article  PubMed  Google Scholar 

  27. Chhikara, S., Chaudhary, D., Yadav, M., Sainger, M., & Jaiwal, P. K. (2012). A non-tissue culture approach for developing transgenic Brassica juncea L. plants with Agrobacterium tumefaciens. In Vitro Cellular Development Biology-Plant, 48, 7–14. https://doi.org/10.1007/s11627-011-9408-x

    Article  CAS  Google Scholar 

  28. Chen, G., Zeng, F., Wang, J., Ye, X., Zhu, S., Yuan, L., Hou, J., & Wang, C. (2019). Transgenic Wucai (Brassica campestris L.) produced via Agrobacterium-mediated anther transformation in planta. Plant Cell Reports, 38, 577–586. https://doi.org/10.1007/s00299-019-02387-0

    Article  CAS  PubMed  Google Scholar 

  29. Kumar, A., Sainger, M., Jaiwal, R., Chaudhary, D., & Jaiwal, P. K. (2021). Tissue culture- and selection-independent Agrobacterium tumefaciens-mediated transformation of a recalcitrant grain legume, Cowpea (Vigna unguiculata L. Walp). Molecular Biotechnology, 63, 710–718. https://doi.org/10.1007/s12033-021-00333-8

    Article  CAS  PubMed  Google Scholar 

  30. Chen, X., Lai, S., Zhuang, C., Huang, J., & Hu, Y. (2022). Sandwich Ct real-time PCR identifies single-copy T-DNA integration accumulating in backbone-free transgenic T1 Arabidopsis. Plant Science, 318, 111204. https://doi.org/10.1016/j.plantsci.2022.111204

    Article  CAS  PubMed  Google Scholar 

  31. Berti, M., Samarappuli, D., Johnson, B. L., & Gesch, R. W. (2017). Integrating winter camelina into maize and soybean cropping systems. Industrial Crops Production, 107, 595–601.

    Article  Google Scholar 

  32. Yemets, A. I., Boychuk, Y. N., Shysha, E. N., Rakhmetov, D. B., & Blume, Y. B. (2013). Establishment of in vitro culture, plant regeneration, and genetic transformation of Camelina sativa. Cytology Genetics, 47, 138–144. https://doi.org/10.3103/S0095452713030031

    Article  Google Scholar 

  33. Ontiveros-Cisneros, A., Moss, O., Van Moerkercke, A., & Van Aken, O. (2022). Evaluating antibiotic-based selection methods for Camelina sativa stable transformants. Cells, 11, 1068. https://doi.org/10.3390/cells11071068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sitther, V., Tabatabai, B., Enitan, O., & Dhekney, S. (2018). Agrobacterium-mediated transformation of Camelina sativa for production of transgenic plants. Journal Biological Methods, 5, e83. https://doi.org/10.14440/jbm.2018.208

    Article  Google Scholar 

  35. Kang, J., Snapp, A. R., & Lu, C. (2011). Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiology Biochemistry, 49, 223–229. https://doi.org/10.1016/j.plaphy.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  36. Walsh, K. D., Puttick, D. M., Hills, M. J., Yang, R. C., Topinka, K. C., & Hall, L. M. (2012). First report of outcrossing rates in camelina (Camelina sativa (L.) Crantz), a potential platform for bioindustrial oils. Canadian Journal Plant Science, 92, 681–685. https://doi.org/10.4141/cjps2011-182

    Article  CAS  Google Scholar 

  37. Bansal, S., Kim, H. J., Na, G., Hamilton, M. E., Cahoon, E. B., Lu, C., & Durrett, T. P. (2018). Towards the synthetic design of camelina oil enriched in tailored acetyl-triacylglycerols with medium-chain fatty acids. Journal Experimental Botany, 69, 4395–4402. https://doi.org/10.1093/jxb/ery225

    Article  CAS  Google Scholar 

  38. Šutá, D., Matušíková, I., & Blehová, A. (2019). Targeting transgene to seed resulted in a high rate of morphological abnormalities of Camelina transformants. Nova Biotechnologia Chimica, 18, 94–101. https://doi.org/10.2478/nbec-2019-0012

    Article  Google Scholar 

  39. Boothe, J., Nykiforuk, C., Shen, Y., Zaplachinski, S., Szarka, S., Kuhlman, P., Murray, E., Morck, D., & Moloney, M. M. (2010). Seed-based expression systems for plant molecular farming. Plant Biotechnology Journal, 8, 588–606. https://doi.org/10.1111/j.1467-7652.2010.00511.x

    Article  CAS  PubMed  Google Scholar 

  40. Wahren, J., Ekberg, K., & Jörnvall, H. (2007). C-peptide is a bioactive peptide. Diabetologia, 50, 503–509. https://doi.org/10.1007/s00125-006-0559-y

    Article  CAS  PubMed  Google Scholar 

  41. Hörber, S., Achenbach, P., Schleicher, E., & Peter, A. (2020). Harmonization of immunoassays for biomarkers in diabetes mellitus. Biotechnology Advances, 39, 107359. https://doi.org/10.1016/j.biotechadv.2019.02.015

    Article  CAS  PubMed  Google Scholar 

  42. Nykiforuk, C. L., Boothe, J. G., Murray, E. W., Keon, R. G., Joseph Goren, H., Markley, N. A., & Moloney, M. M. (2006). Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnology Journal, 4, 77–85.

    Article  CAS  PubMed  Google Scholar 

  43. Chen, Y. S., Zaro, J. L., Zhang, D., Huang, N., Simon, A., & Shen, W. C. (2018). Characterization and oral delivery of proinsulin-transferrin fusion protein expressed using express-Tec. International Journal Molecular Science, 19, 378. https://doi.org/10.3390/ijms19020378

    Article  CAS  Google Scholar 

  44. Daniell, H., Nair, S. K., Guan, H., Guo, Y., Kulchar, R. J., Torres, M. D., Shahed-Al-Mahmud, M., Wakade, G., Liu, Y. M., Marques, A. D., & Graham-Wooten, J. (2022). Debulking different Corona (SARS-COV-2 delta, omicron, OC43) and influenza (H1N1, H3N2) virus strains by plant viral trap proteins in chewing gums to decrease infection and transmission. Biomaterials, 288, 121671. https://doi.org/10.1016/j.biomaterials.2022.121671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

PKJ and SB are thankful to the University Grants Commission, New Delhi, for the award of the Basic Science Research-Faculty Fellowship and Senior Research Fellowship, respectively and to Prof. Edgar Cahoon, University of Nebraska-Lincoln, USA for pBinGy1bar. No special funding for this work was available.

Funding

No special funding was available for this work.

Author information

Authors and Affiliations

Authors

Contributions

SB contributed toward methodology, investigation, analysis, and writing-original draft. PS contributed toward interpretation of data. DC contributed toward project administration, resources, writing review, and editing. RJ contributed toward conceptualization, study design, writing review, and editing. PKJ contributed toward conceptualization, supervision, writing review, and editing.

Corresponding author

Correspondence to Pawan K. Jaiwal.

Ethics declarations

Conflict of interests

The authors do not have a conflict of interest.

Ethical Approval

The use of small animals in the present study was approved by the Institutional Animal Ethical Committee (IAEC) of CPCSEA (Committee for the Purpose of Control and Supervision of Experiments on Animals), M. D. University, Rohtak-124001(India).

Consent for Publication

All co-authors have given their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoria, S., Saini, P., Chaudhary, D. et al. Engineering Camelina sativa Seeds as a Green Bioreactor for the Production of Affordable Human Pro-insulin that Demonstrates Anti-diabetic Efficacy in Rats. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01068-y

Keywords

Navigation