Skip to main content
Log in

An Agrobacterium-mediated non-antibiotic selection-based transformation system for rice (Oryza sativa ssp. indica) cultivar “93-11” successfully produces TAC1-silenced transgenic plants

  • Embryo Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The rice (Oryza sativa L. ssp. indica) cultivar “93-11” is a reference genotype used in many studies; however, its recalcitrance during transformation and regeneration greatly limits functional genomics and breeding research. In this study, we developed an efficient Agrobacterium tumefaciens–mediated transformation system for “93-11”, based on the phosphor mannose isomerase (PMI) positive selection system. Calli of “93-11” were transformed with the Agrobacterium strain EHA105 harboring a binary vector, containing the PMI gene and an RNAi sequence targeting TILLER ANGLE CONTROLLING 1 (TAC1). We also developed a method for removing Agrobacterium from the callus following co-cultivation and determined the optimal conditions for PMI selection and callus differentiation. Compared with the hygromycin phosphotransferase (HPT) selection system, newly generated calli were recovered at higher rates on the PMI selection medium, with “93-11” transformation frequency reaching 7.50%. Notably, the down-regulation of TAC1 in the “93-11” genetic background led to a more compact plant architecture. Overall, this work presents a genetic transformation system suitable for the reference indica variety “93-11” using a non-antibiotic selectable agent. This advance will facilitate functional genomic research and the improvement of agronomic traits for indica varieties recalcitrant to transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Aldemita RR, Hodges TK (1996) Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199:612–617

    Article  CAS  Google Scholar 

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson D, Kausch AP, Lemaux PG, Medford JI, Orozcocardenas ML, Tricoli D, Eck JV, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN (2016) Advancing crop transformation in the era of genome editing. The Plant Cell 28:1510–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aswath CR, Mo SY, Kim DH, Park SW (2006) Agrobacterium and biolistic transformation of onion using non-antibiotic selection marker phosphomannose isomerase. Plant Cell Reports 25:92–99

    Article  CAS  PubMed  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annual review of plant physiology and plant molecular biology 48:297–326

    Article  CAS  PubMed  Google Scholar 

  • Bříza J, Růžičková N, Niedermeierová H, Dusbábková J, Vlasák J (2010) Phosphomannose isomerase gene for selection in lettuce (Lactuca sativa L.) transformation. Acta Biochimica Polonica 57:63–68

    Article  PubMed  Google Scholar 

  • Chen LL, Zhang SP, Beachy RN, Fauquet CM (1998) A protocol for consistent, large-scale production of fertile transgenic rice plants. Plant Cell Reports 18:25–31

    Article  Google Scholar 

  • Dahl R, Bravo Y, Sharma V, Ichikawa M, Dhanya RP, Hedrick M, Brown B, Rascon J, Vicchiarelli M, Mangravita-Novo A, Yang L, Stonich D, Su Y, Smith LH, Sergienko E, Freeze HH, Cosford NDP (2011) Potent, selective, and orally available benzoisothiazolone phosphomannose isomerase inhibitors as probes for congenital disorder of glycosylation Ia. Journal of Medicinal Chemistry 54:3661–3668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai ZY, Zhao BH, Liu XJ, Xia GH, Tan CL, Zhang BQ, Zhang HX (1997) A new middle-mature indica rice variety Yangdao 6 with high yielding, high quality and multiple disease resistance (in Chinese). Jiangsu Agricultural Sciences 4:13–14

    Google Scholar 

  • Datta K, Baisakh N, Oliva N, Torrizo L, Abrigo E, Tan J, Rai M, Rehana S, Albabili S, Beyer P, Potrykus I, Datta SK (2003) Bioengineered ‘golden’ indica rice cultivars with β-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnology Journal 1:81–90

    Article  CAS  PubMed  Google Scholar 

  • Ding ZS, Zhao M, Jing YX, Li LB, Kuang TY (2006) Efficient Agrobacterium-mediated transformation of rice by phosphomannose isomerase/mannose selection. Plant Molecular Biology Reporter 24:295–303

    Article  CAS  Google Scholar 

  • Dong HJ, Zhao H, Xie WB, Han ZM, Li GW, Yao W, Bai XF, Hu Y, Guo ZL, Lu K, Yang L, Xing YZ (2016) A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genetics 12:e1006412

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle J (1991) In: Hewitt GM, Johnston AWB, Young J, Peter W (eds) DNA protocols for plants. Molecular Techniques in Taxonomy. Springer Verlag, Berlin, pp 283–293

    Chapter  Google Scholar 

  • Duan YB, Zhai CG, Li H, Li J, Mei WQ, Gui HP, Ni DH, Song FS, Li L, Zhang WG, Yang JB (2012) An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in japonica rice (Oryza sativa L.). Plant Cell Reports 31:1611–1624

    Article  CAS  PubMed  Google Scholar 

  • Gadaleta A, Giancaspro A, Blechl A, Blanco A (2006) Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. Journal of Cereal Science 43:31–37

    Article  CAS  Google Scholar 

  • Gui HP, Li X, Liu YB, Han K, Li XG (2014) The relationship between PMI (manA) gene expression and optimal selection pressure in indica rice transformation. Plant Cell Reports 33:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan HQ, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Reports 28:429–444

    Article  CAS  PubMed  Google Scholar 

  • He ZQ, Duan ZZ, Liang W, Chen FJ, Yao W, Liang HW, Yue CY, Sun ZX, Chen F, Dai JW (2006) Mannose selection system used for cucumber transformation. Plant Cell Reports 25:953–958

    Article  CAS  PubMed  Google Scholar 

  • He ZQ, Fu YP, Si HM, Hu GC, Zhang SH, Yu YH, Sun ZX (2004) Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium. Plant Science 166:17–22

    Article  CAS  Google Scholar 

  • Hiei Y, Komari T (2006) Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture 85:271–283

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Li SL, Fan XW, Song S, Zhou X, Weng XY, Xiao JH, Li XH, Xiong LZ, You AQ, Xing YZ (2020) OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiology 184:1424–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IRRI (1991) World Rice Statistics 1990. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Reports 26:581–590

    Article  CAS  PubMed  Google Scholar 

  • Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Molecular Breeding 4:111–117

    Article  CAS  Google Scholar 

  • Li H, Sun HY, Jiang JH, Sun XY, Tan LB, Sun CQ (2021) TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnology Journal 19:64–73

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liang Y, Yuan YD, Wang L, Meng XB, Xiong GS, Zhou J, Cai YY, Han NP, Hua LK, Liu GF, Li JY, Wang YH (2019) OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Molecular Plant 12:1143–1156

    Article  CAS  PubMed  Google Scholar 

  • Lin YJ, Zhang QF (2005) Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Reports 23:540–547

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the (2-ΔΔCt) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lucca P, Ye XD, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Molecular Breeding 7:43–49

    Article  CAS  Google Scholar 

  • Miki B, Mchugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. Journal of Biotechnology 107:193–232

    Article  CAS  PubMed  Google Scholar 

  • Miles JS, Guest JR (1984) Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. Gene 32:41–48

    Article  CAS  PubMed  Google Scholar 

  • Mohammed S, Samad AA, Rahmat Z (2019) Agrobacterium-mediated transformation of rice: constraints and possible solutions. Rice Science 26:133–146

    Article  Google Scholar 

  • Nishimura A, Aichi I, Matsuoka M (2007) A protocol for Agrobacterium-mediated transformation in rice. Nature Protocols 1:2796–2802

    Article  Google Scholar 

  • Reed J, Privalle L, Luann Powell M, Meghji M, Dawson J, Dunder E, Suttie J, Wenck A, Launis K, Kramer C, Chang YF, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cellular & Developmental Biology-Plant 37:127–132

    Article  CAS  Google Scholar 

  • Rong RJ, Wu PC, Lan JP, Wei HF, Wei J, Chen H, Shi JN, Hao YJ, Liu LJ, Dou SJ, Li LY, Wu L, Liu SQ, Yin CC, Liu GZ (2016) Western blot detection of PMI protein in transgenic rice. Journal of Integrative Agriculture 15:726–734

    Article  CAS  Google Scholar 

  • Sang DJ, Chen DQ, Liu GF, Liang Y, Huang LZ, Meng XB, Chu JF, Sun XH, Dong GJ, Yuan YD, Qian Q, Li JY, Wang YH (2014) Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 111:11199–11204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi FH, Tan MX, Mo QC, Chen XY, Zhao YM, Guo XY, Jiang N (2020) Application of the phosphomannose-isomerase/mannose selection system in the Agrobacterium-mediated transformation of Lonicera hypoglauca Miq. Journal of Plant Biochemistry and Biotechnology 29:528–538

    Article  CAS  Google Scholar 

  • Sundar IK, Sakthivel N (2008) Advances in selectable marker genes for plant transformation. Journal of Plant Physiology 165:1698–1716

    Article  CAS  PubMed  Google Scholar 

  • Thi T, Hoa C, Bong BB (2002) Agrobacterium-mediated transformation of rice embryogenic suspension cells using phosphomannose isomerase gene, pmi, as a selectable marker. OmonRice 10:1–5

    Google Scholar 

  • Thiruvengadam M, Hsu WH, Yang CH (2011) Phosphomannose-isomerase as a selectable marker to recover transgenic orchid plants (Oncidium Gower Ramsey). Plant Cell, Tissue and Organ Culture 104:239–246

    Article  CAS  Google Scholar 

  • Tie WW, Zhou F, Wang L, Xie WB, Chen H, Li WH, Lin YJ (2012) Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: lessons from transformation assays and genome-wide expression profiling. Plant Molecular Biology 78:1–18

    Article  CAS  PubMed  Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. The Plant Journal 47:969–976

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Petri C, Burgos L, Alburquerque N (2013) Phosphomannose-isomerase as a selectable marker for transgenic plum (Prunus domestica L.). Plant Cell. Tissue and Organ Culture 113:189–197

    Article  CAS  Google Scholar 

  • Wang YH, Li JY (2008) Molecular basis of plant architecture. Annual Review of Plant Biology 59:253–279

    Article  CAS  PubMed  Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Reports 20:429–436

    Article  CAS  PubMed  Google Scholar 

  • Xu YB, McCouch SR, Shen ZT (1998) Transgressive segregation of tiller angle in rice caused by complementary gene action. Crop Science 38:12–19

    Article  Google Scholar 

  • Yu J, Hu SN, Wang J, Wong GK, Li SG, Liu B, Deng YJ, Dai L, Zhou Y, Zhang XQ, Cao ML, Liu J, Sun JD, Tang JB, Chen YJ, Huang XB, Lin W, Ye C, Tong W, Cong LJ, Geng JN, Han YJ, Li L, Li W, Hu GQ, Huang XG, Li WJ, Li J, Liu ZW, Li L, Liu JP, Qi QH, Liu JS, Li L, Li T, Wang XG, Lu H, Wu TT, Zhu M, Ni PX, Han H, Dong W, Ren XY, Feng XL, Cui P, Li XR, Wang H, Xu X, Zhai WX, Xu Z, Zhang JS, He SJ, Zhang JG, Xu JC, Zhang KL, Zheng XW, Dong JH, Zeng WY, Tao L, Ye J, Tan J, Ren XD, Chen XW, He J, Liu DF, Tian W, Tian CG, Xia HA, Bao QY, Li G, Gao H, Cao T, Wang J, Zhao WM, Li P, Chen W, Wang XD, Zhang Y, Hu JF, Wang J, Liu S, Yang J, Zhang GY, Xiong YQ, Li ZJ, Mao L, Zhou CS, Zhu Z, Chen RS, Hao BL, Zheng WM, Chen SY, Guo W, Li GJ, Liu SQ, Tao M, Wang J, Zhu LH, Yuan LP, Yang HM (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  • Yu BS, Lin ZW, Li HX, Li XJ, Li JY, Wang YH, Zhang X, Zhu ZF, Zhai WX, Wang XK, Xie DX, Sun CQ (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. The Plant Journal 52:891–898

    Article  CAS  PubMed  Google Scholar 

  • Yuan LP (1997) Super high yield breeding of hybrid rice (in Chinese). Hybrid Rice 6:1–6

    CAS  Google Scholar 

  • Zhang JW, Chen LL, Xing F, Kudrna DA, Yao W, Copetti D, Mu T, Li WM, Song JM, Xie WB, Lee S, Talag J, Shao L, An Y, Zhang CL, Ouyang YD, Sun S, Jiao WB, Lv F, Du BG, Luo MH, Maldonado CE, Goicoechea JL, Xiong LZ, Wu CY, Xing YZ, Zhou DX, Yu SB, Zhao Y, Wang GW, Yu Y, Luo YJ, Zhou ZW, Hurtado BEP, Danowitz A, Wing RA, Zhang QF (2016) Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proceedings of the National Academy of Sciences of the United States of America 113:E5163–E5171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Su JJ, Xu M, Zhou ZH, Zhu XY, Ma X, Hou JJ, Tan LB, Zhu ZF, Cai HW, Liu FX, Sun HY, Gu P, Li C, Liang YT, Zhao WS, Sun CQ, Fu YC (2020) A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nature Communications 11:443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MQ, Zhuo XL, Wang JH, Wu Y, Yao W, Chen RK (2015) Effective selection and regeneration of transgenic sugarcane plants using positive selection system. In Vitro Cellular & Developmental Biology-Plant 51:52–61

    Article  CAS  Google Scholar 

  • Zhang N, Yu H, Yu H, Cai YY, Huang LZ, Xu C, Xiong GS, Meng XB, Wang JY, Chen HF, Liu GF, Jing YH, Yuan YD, Liang Y, Li SJ, Smith SM, Li JY, Wang YH (2018) A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin. The Plant Cell 30:1461–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WF, Tan LB, Sun HY, Zhao XH, Liu FX, Cai HW, Fu YC, Sun XY, Gu P, Zhu ZF, Sun CQ (2019) Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice. Molecular Plant 12:1075–1089

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the Ministry of Agriculture of China (2016ZX08001-004) and the Innovation Group for the Fujian Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Contributions

J.H. performed the experiments, analyzed the data, and wrote the paper. H.C. analyzed the data and wrote the paper. Y.F., Y.Z., and B.H. helped to perform the experiments. C.S. revised the paper. Y.-C.F. designed the research, analyzed the data, and revised the paper.

Corresponding author

Correspondence to Yongcai Fu.

Additional information

Editor: Yong Eui Choi

Supplementary information

Supplementary Fig. S1

Conditions of “93-11” calli after a treatment with the PMI or HPT selection system. Scale bars = 2 cm. (PNG 2608 kb)

High Resolution (TIF 7363 kb)

Supplementary Table S1

Composition of the media and solutions used in the experiments. (PDF 44 kb)

Supplementary Table S2

Comparison of agronomic traits between negative transgenic plants and TAC1-RNAi-9311 transgenic plants. (PDF 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Chen, H., Fang, Y. et al. An Agrobacterium-mediated non-antibiotic selection-based transformation system for rice (Oryza sativa ssp. indica) cultivar “93-11” successfully produces TAC1-silenced transgenic plants. In Vitro Cell.Dev.Biol.-Plant 57, 786–795 (2021). https://doi.org/10.1007/s11627-021-10202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-021-10202-3

Keywords

Navigation