Skip to main content
Log in

Regeneration and production of transgenic Lilium longiflorum via Agrobacterium tumefaciens

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Efficient transformation of lilies is required for their genetic improvement in ornamental and marketable qualities. Although Lilium longiflorum can be transformed by particle bombardment and Agrobacterium, the transformation frequency is low. In this study, we tested new Agrobacterium-mediated transformation methods using shoot segments combined with two different regeneration systems. Shoot segments were co-cultivated for 2 d with Agrobacterium tumefaciens strain AGL1/pCAS04 harboring a binary vector carrying the neomycin phosphotransferase II driven by a promoter from the maize ubiquitin gene. The effect of different concentrations of 6-benzyladenine (BA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on regeneration was investigated. The results indicated that Murashige and Skoog (MS) medium with 4.4 μM BA and 0.5 μM α-naphthalene acetic acid was optimal for shoot formation, and the nodal stem was the best explant for shoot induction. MS medium with 9.0 μM 2,4-D and 0.4 μM BA was optimal for callus induction. The direct shoot formation method regenerated 187 plantlets per 100 explants, and 74.4% of the regenerants were positive in transgene PCR. The callus regeneration method regenerated 20 plantlets per 100 explants, and 31.5% of them were PCR positive. Southern blotting confirmed the insertion of transgene in the plant host genome. The direct shoot formation method is more than 20-fold more efficient than previously reported transformation method in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Benedito V. A.; Kronenburg-van der Ven B. C. E.; Tuyl J. M.; Angenent G. C.; Krens F. A. Transformation of Lilium longiflorum via particle bombardment and generation of herbicide-resistant plants. Crop Breeding and Applied Biotech. 5(3): 259–264; 2005.

    CAS  Google Scholar 

  • Chandler S.; Lu C. Y. Biotechnology in ornamental horticulture. In Vitro Cellular And Developmental Biology-Plant. 41(5): 591–601; 2005.

    Article  Google Scholar 

  • Eady C. C.; Weld R. J.; Lister C. E. Agrobacterium tumefaciens-mediated transformation and transgenic-plant regeneration of onion (Allium cepa L.). Plant Cell Rep 19: 376–381; 2000.

    Article  CAS  Google Scholar 

  • Han B. H.; Yae B. W.; Yu H. J.; Peak K. Y. Improvement of in vitro micropropagation of Lilium oriental hybrid ‘Casablanca’ by the formation of shoots with abnormally swollen basal plates. Scientia Hort. 103: 351–359; 2005.

    Article  CAS  Google Scholar 

  • Hoshi Y.; Kondo M.; Kobayashi H.; Mori S.; Nakano M. Agrobacterium-mediated transformation of Lilium longiflorum. Acta Hort. 673: 543–547; 2005.

    CAS  Google Scholar 

  • Hoshi Y.; Kondo M.; Mori S.; Adachi Y.; Nakano M.; Kobayashi H. Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Rep. 22: 359–364; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Irifune K.; Morimoto Y.; Uchihama M. Production of herbicide resistant transgenic lily plants by particle bombardment. Journal of the Japanese Society for Horticultural Science. 72(60): 511–516; 2003.

    CAS  Google Scholar 

  • Jefferson R. A. Assaying chimeric genes in plant: the GUS gene fusion system. Plant Mol Biol Rep. 5: 387–405; 1987.

    Article  CAS  Google Scholar 

  • Kisaka H.; Kameya T. Fertile transgenic asparagus plants produced by Agrobacterium-mediated transformation. Plant Biotechnol. 15: 177–181; 1998.

    CAS  Google Scholar 

  • Kondo T.; Hasegawa H.; Suzuki M. Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Rep 19: 989–993; 2000.

    Article  CAS  Google Scholar 

  • Langeveld S. A.; Gerrits M. M.; Derks A. F. L. M.; Boonekamp P. M.; Bol J. F. Transformation of lily by Agrobacterium. Euphytica. 85: 97–100; 1995.

    Article  CAS  Google Scholar 

  • Li Q. H.; Hong B.; Tong Z.; Ma C.; Guan A. N.; Yu J. J.; Gao J. P. Establishment of regeneration system and transformation of Zm401 gene in Lilium longiflorum × L. formosanum. Chinese J. Agric. Biotechnol. 5: 13–119; 2008.

    Google Scholar 

  • Lichtenstein C. P.; Draper J. Genetic engineering of plants. In: Glover D. M. (ed) DNA cloning: a practical approach, vol 2. IRL, Washington, D.C., p 78; 1985.

    Google Scholar 

  • Liu J.; Jin Z.; Xu B.; Zheng S.; Liu Z. The regeneration and transformation of Longya lilium. Mol. Plant Breeding 1: 465–474; 2003 (in Chinese).

    CAS  Google Scholar 

  • Maesato K.; Sharada K.; Fukui H.; Hara H.; Sarma K. S. In vitro bulblet regulation from bulbscale explants of Lilium japonicum Thunb.: effect of plant growth regulators and culture environment. J. Hort. Sci. 69: 289–297; 1994.

    Google Scholar 

  • Miyoshi H.; Usami T.; Tanaka I. High level of GUS gene expression driven by pollen-specific promoters in electroporated lily pollen protoplasts. Sex Plant Rep. 8: 205–209; 1995.

    Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Nhut D. T. Micropropagation of lily (Lilium longiflorum) via in vitro stem node and pseudo-bulblet culture. Plant Cell Rep. 17: 913–916; 1998.

    Article  CAS  Google Scholar 

  • Nishihara M.; Ito M.; Tanaka I.; Kyo M.; Ono K.; Irifune K.; Morikawa M. Expression of the β-glucuronidase gene in pollen of lily (Lilium longiflorum), tobacco (Nicotiana tabacum), Nicotiana rustica, and peony (Paeonia lactiflora) by particle bombardment. Plant Physiol. 102: 357–361; 1993.

    PubMed  CAS  Google Scholar 

  • Robinson K.; Firoozababy E. Transformation of floriculture crops. Sci Hort. 55: 83–99; 1993.

    Article  CAS  Google Scholar 

  • Sanford J. C.; Smith F. D.; Russell J. A. Optimizing the biolistic process for different biological applications. Methods Enzymol. 217: 483–510; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Stanilova M. I.; Ilcheva V. P.; Zagorska N. A. Morphogenetic potential and in vitro micropropagation of endangered plant species Leucojum aestivum L. and Lilium rhodopaeum Delip. Plant Cell Rep 13: 451–453; 1994.

    Article  CAS  Google Scholar 

  • Suzuki S.; Nakano M. Agrobacterium-mediated production of transgenic plants Muscari armeniacum Leichtl. ex Bak. Plant Cell Rep 20: 835–841; 2002.

    Article  CAS  Google Scholar 

  • Suzuki S.; Supaibulwatana K.; Mii M.; Nakano M. Production of transgenic plants of Liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Sci 161: 89–97; 2001.

    Article  CAS  Google Scholar 

  • Travella S.; Ross S. M.; Harden J.; Everett C.; Snape J. W.; Harwood W. A. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep. 23: 780–789; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya T.; Takumi S.; Shimada T. Transient expression of a reporter gene in bulbscales and immature embryos of three Lilium species is affected by 5 upstream sequences and culture conditions. Physiol Plant. 98: 699–704; 1996.

    Article  CAS  Google Scholar 

  • Watad A. A.; Yun D. J.; Matsumoto T.; Niu X.; Wu Y.; Kononowicz A. K.; Bressan R. A.; Hasegawa P. M. Microprojectile bombardment-mediated transformation of Lilium longiflorum. Plant Cell Rep. 17: 262–267; 1998.

    Article  CAS  Google Scholar 

  • Wilmink A.; van de Ven B. C. E.; Dons J. J. M. Activity of constitutive promoters in various species from the Liliaceae. Plant Mol Biol. 28: 949–955; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y. S.; Yin X. Y.; Yang A. F.; Li G. S.; Zhang J. R. Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica. 144: 11–22; 2005.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Chengcai Chu, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China for the gift of A. tumefaciens strain AGL1/pCAS04. This work was supported by National Nonprofit Institute Research Grant of Institute of Tropical Bioscience and Biotechnology CATAS-ITBB (ITBBYB071, Haikou, China) and a grant of the Scientific Fund of Chinese Academy of Tropical Agricultural Sciences (No. Rky0529, Haikou, China). We wish to thank Professor Sixiang Zheng, Yunnan Agricultural University, Kunming, China, for his kindly providing experiment materials and Mr. Kang Lai for his carefully planting plantlets. All the authors are grateful to Dr. Nanfei Xu and Ms. Amy McCaskill, BASF Plant Science L.L.C., NC, USA for their polishing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Jin.

Additional information

Editor: D. T. Tomes

Juhua Liu and Jing Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Zhang, J., Xu, B. et al. Regeneration and production of transgenic Lilium longiflorum via Agrobacterium tumefaciens . In Vitro Cell.Dev.Biol.-Plant 47, 348–356 (2011). https://doi.org/10.1007/s11627-010-9336-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-010-9336-1

Keywords

Navigation