Skip to main content

Advertisement

Log in

Multifunctional grains for the future: genetic engineering for enhanced and novel cereal quality

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Cereals provide more than half the world population’s calorific intake, and have a variety of other important uses as food and beverage ingredients, livestock feeds, and as sources of renewable energy and industrial components. The technology to genetically modify many important cereals is now well-established, thereby presenting new opportunities to produce cereals with enhanced quality and novel properties. In 2007, GM (genetically modified) maize with insect and herbicide resistance was grown on over 30 million hectares worldwide, yet to date, there are no GM cereals with enhanced or novel grain (end-use) qualities being grown in commercial farmers’ fields. This review will discuss some of the latest GM technology developments reported to enhance the quality of cereals for food and other uses. Developments and opportunities involving gene manipulation for starch and protein quality, as well as non-starch polysaccharides, phenolic compounds and micronutrients will also be discussed. The current paucity of GM cereals with enhanced grain quality is not related to the absence of technological progress, rather it is the regulatory and consumer acceptance issues that have slowed the release of these crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Able J. A.; Rathus C.; Godwin I. D. The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell. Dev. Biol.-Plant 37: 341–348; 2001. doi:10.1007/s11627-001-0061-7.

    Article  CAS  Google Scholar 

  • Abrahams S.; Tanner G. J.; Larkin P. J.; Ashton A. R. Identification and biochemical characterisation of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol. 130: 561–576; 2002. doi:10.1104/pp.006189.

    Article  PubMed  CAS  Google Scholar 

  • Albert S.; Delseny M.; Devic M. BANYULS, a novel negative regulator or flavonoid biosynthesis in the Arabidopsis seed coat. Plant J. 11: 289–299; 1997. doi:10.1046/j.1365-313X.1997.11020289.x.

    Article  PubMed  CAS  Google Scholar 

  • Alloui-Lombarkia O.; Zemmouri F.; Smulikowska S.; Alloui N. In vitro effects of enzymes on the viscosity and non-starch polysaccharides of barley. Br. Poult. Sci. 44: 800–801; 2003. doi:10.1080/00071660410001666871.

    Article  PubMed  CAS  Google Scholar 

  • Anderson O. Molecular approaches to cereal quality improvementIn: Henry R. J.; Kettlewell P. S. (eds) Cereal grain quality. Chapman & Hall, London, pp 371–404; 1996.

    Google Scholar 

  • Appenzeller L.; Doblin M.; Barreiro R.; Wang H. Y.; Niu X. M.; Kollipara K.; Carrigan L.; Tomes D.; Chapman M.; Dhugga K. S. Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11: 287–299; 2004. doi:10.1023/B:CELL.0000046417.84715.27.

    Article  CAS  Google Scholar 

  • Austin S.; Bingham E. T.; Koegel R. G.; Mathews D. E.; Shahan M. N.; Straub R. J. An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa. In: Bajpai R. K.; Prokop A. (eds) Recombinant DNA technology II. New York Academy of Sciences, New York, pp 134–244; 1994.

    Google Scholar 

  • Bai N.; Zhou Z.; Zhu N.; Zhang L.; Quan Z.; He K.; Zheng Q. Y.; Ho C. T. Antioxidative flavonoids from the flower of Inula britannica. J. Food Lipids 12: 141–149; 2005. doi:10.1111/j.1745-4522.2005.00012.x.

    Article  CAS  Google Scholar 

  • Bedford M. R.; Morgan A. J. The use of enzymes in poultry diets. Worlds Poult. Sci. J. 52: 61–68; 1996. doi:10.1079/WPS19960007.

    Article  Google Scholar 

  • Bellucci M.; Alpini A.; Arcioni S. Zein accumulation in forage species (Lotus corniculatus and Medicago sativa) and co-expression of the γ-zein:KDEL and β-zein:KDEL polypeptides in tobacco leaf. Plant Cell Rep. 20: 848–856; 2002. doi:10.1007/s00299-001-0413-0.

    Article  CAS  Google Scholar 

  • Bellucci M.; De Marchis F.; Mannucci R.; Bock R.; Arcioni S. Cytoplasm and chloroplasts are not suitable subcellular locations for β-zein accumulation in transgenic plants. J. Exp. Bot. 56: 1205–1212; 2005. doi:10.1093/jxb/eri114.

    Article  PubMed  CAS  Google Scholar 

  • Beyer P.; Al-Babili S.; Ye X. D. Golden rice: Introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr. 132: 506S–510S; 2002.

    PubMed  Google Scholar 

  • Bird A. R.; Flory C.; Davies D. A.; Usher S.; Topping D. L. A novel barley cultivar (Himalaya 292) with specific gene mutation is starch synthase IIa raises large bowel starch and short chain fatty acid in rats. J. Nutr. 134: 831–835; 2004.

    PubMed  CAS  Google Scholar 

  • Buchanan B. B. Thioredoxin: a photosynthetic regulatory protein finds application in food improvement. J. Sci. Food Agric. 82: 45–52; 2002. doi:10.1002/jsfa.1002.

    Article  CAS  Google Scholar 

  • Buchanan B. B.; Adamidi C.; Lozano R. M.; Yee B. C.; Momma M.; Kobrehel K.; Ermel R.; Frick O. L. Thioredoxin-linked mitigation of allergic responses to wheat. Proc. Natl. Acad. Sci. USA 94: 5372–5377; 1997. doi:10.1073/pnas.94.10.5372.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan B. B.; Balmer Y. Redox regulation: a broadening horizon. Annu. Rev. Plant Biol. 56: 187–220; 2005. doi:10.1146/annurev.arplant.56.032604.144246.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan B. B.; Schürmann P.; Decottignies P.; Lozano R. M. Thioredoxin: a multifunctional regulatory protein with a bright future in technology and medicine. Arch. Biochem. Biophys. 314: 257–260; 1994. doi:10.1006/abbi.1994.1439.

    Article  PubMed  CAS  Google Scholar 

  • Buckeridge M. S.; Rayon C.; Urbanowicz B.; Tine M. A. A.; Carpita N. C. Mixed linkage (1→3),(1→4)-β-d-glucans of grasses. Cereal Chem. 81: 115–127; 2004. doi:10.1094/CCHEM.2004.81.1.115.

    Article  CAS  Google Scholar 

  • Buffo R. A.; Weller C. L.; Gennadios A. Films from laboratory-extracted sorghum kafirin. Cereal Chem. 74: 473–475; 1997. doi:10.1094/CCHEM.1997.74.4.473.

    Article  CAS  Google Scholar 

  • Burn J. E.; Hocart C. H.; Birch R. J.; Cork A. C.; Williamson R. E. Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in arabidopsis. Plant Physiol. 129: 797–807; 2002. doi:10.1104/pp.010931.

    Article  PubMed  CAS  Google Scholar 

  • Burton R. A.; Gibeaut D. M.; Bacic A.; Findlay K.; Roberts K.; Hamilton A.; Baulcombe D. C.; Fincher G. B. Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12: 691–705; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Burton, R. A.; Jobling, S. A.; Harvey, A. J.; Shirley, N. J.; Mather, D. E.; Bacic, A.; Fincher, G. B. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley (Hordeum vulgare L.). Plant Physiol. (in press); 2008. doi:10.1104/pp.107.114694; 2008.

  • Burton R. A.; Shirley N. J.; King B. J.; Harvey A. J.; Fincher G. B. The CesA gene family of barley. Quantitative expressionof transcripts reveals two groups of co-expressed genes. Plant Physiol. 134: 224–236; 2004. doi:10.1104/pp.103.032904.

    Article  PubMed  CAS  Google Scholar 

  • Burton R. A.; Wilson S. M.; Hrmova M.; Harvey A. J.; Shirley N. J.; Medhurst A.; Stone B. A.; Newbigin E. J.; Bacic A.; Fincher G. B. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-d-glucans. Science 311: 1940–1942; 2006. doi:10.1126/science.1122975.

    Article  PubMed  CAS  Google Scholar 

  • Byaruhanga Y. B.; Erasmus C.; Taylor J. R. N. Effect of microwave heating of kafirin on the functional properties of kafirin films. Cereal Chem. 82: 565–573; 2005. doi:10.1094/CC-82-0565.

    Article  CAS  Google Scholar 

  • Cheng M.; Fry J. E.; Pang S.; Zhou H.; Hironaka C. M.; Duncan D. R.; Conner T. W.; Wan Y. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115: 971–980; 1997.

    PubMed  CAS  Google Scholar 

  • Chiang C. M.; Yeh F. S.; Huang L. F.; Tseng T. H.; Chung M. C.; Wang C. S.; Lur H. S.; Shaw J. F.; Yu S. M. Expression of a bi-functional and thermostable amylopullulanase in transgenic rice seeds leads to autohydrolysis and altered composition of starch. Mol. Breed. 15: 125–143; 2005. doi:10.1007/s11032-004-3919-7.

    Article  CAS  Google Scholar 

  • Cho M. -J.; Wong J. H.; Marx C.; Jiang W.; Lemaux P. G.; Buchanan B. B. Overexpression of thioredoxin h leads to enhanced activity of starch debranching enzyme (pullulanase) in barley grain. Proc. Natl. Acad. Sci. USA 96: 14641–14646; 1999. doi:10.1073/pnas.96.25.14641.

    Article  PubMed  CAS  Google Scholar 

  • Ciceri P.; Castelli S.; Lauria M.; Lazzari B.; Genga A.; Bernard L.; Sturaro M.; Viotti A. Specific combinations of zein genes and genetic backgrounds influence the transcription of the heavy-chain zein genes in maize opaque-2 endosperms. Plant Physiol. 124: 451–460; 2000. doi:10.1104/pp.124.1.451.

    Article  PubMed  CAS  Google Scholar 

  • Cone K. C.; Burr F. A.; Burr B. Molecular analysis of the maize anthocyanin regulatory locus C1. Proc.Natl. Acad. Sci. USA 83: 9631–9635; 1986. doi:10.1073/pnas.83.24.9631.

    Article  PubMed  CAS  Google Scholar 

  • Consonni G.; Gavazzi G.; Dolfini S. Genetic analysis as a tool to investigate the molecular mechanisms underlying seed development in maize. Ann. Bot. 96: 353–362; 2005. doi:10.1093/aob/mci187.

    Article  PubMed  CAS  Google Scholar 

  • Cook J. D.; Skikne B. S.; Baynes R. D. Iron deficiency: the global perspective. Adv. Exp. Med. Biol. 356: 219–228; 1994.

    PubMed  CAS  Google Scholar 

  • Crispeels M. J.; Sadava D. E. Plants, Genes and Crop Biotechnology. Jones and Bartlett, Sudbury, Mass, USA; 2003.

    Google Scholar 

  • Cuq B.; Gontard N.; Guilbert S. Proteins as agricultural polymers for packaging production. Cereal Chem. 75: 1–9; 1998. doi:10.1094/CCHEM.1998.75.1.1.

    Article  CAS  Google Scholar 

  • Curtis, I. S. (ed) Transgenic crops of the world: essential protocols. Kluwer, Dordrecht, Netherlands; 2004.

  • Damerval C.; Le Guilloux M. Characterization of novel proteins affected by the o2 mutation and expressed during maize endosperm development. Mol. Gen. Genet. 257: 354–361; 1998. doi:10.1007/s004380050657.

    Article  PubMed  CAS  Google Scholar 

  • da Silva L. S.; Taylor J. R. N. Sorghum bran as a potential source of kafirin. Cereal Chem. 81: 322–327; 2004. doi:10.1094/CCHEM.2004.81.3.322.

    Article  Google Scholar 

  • da Silva L. S.; Taylor J. R. N. Physical, mechanical, and barrier properties of kafirin films from red and white sorghum milling fractions. Cereal Chem. 82: 9–14; 2005. doi:10.1094/CC-82-0009.

    Article  CAS  Google Scholar 

  • Delmer D. P. Agriculture in the developing world: connecting innovations in plant research to downstream applications. Proc. Natl. Acad. Sci. USA 102: 15739–15746; 2005. doi:10.1073/pnas.0505895102.

    Article  PubMed  CAS  Google Scholar 

  • Dias A.; Grotewold E. Manipulating the accumulation of phenolics in maize cultured cells using transcription factors. Biochem. Eng. J. 14: 207–216; 2003. doi:10.1016/S1369-703X(02)00225-5.

    Article  CAS  Google Scholar 

  • Dixon R. A.; Xie D.; Sharma S. B. Proanthocyanidins—a final frontier in flavonoid research? New Phytol. 165: 9–28; 2005. doi:10.1111/j.1469-8137.2004.01217.x.

    Article  PubMed  CAS  Google Scholar 

  • Duan M.; Sun S. S. M. Profiling the expression of genes controlling rice grain quality. Plant Mol. Biol. 59: 165–178; 2005. doi:10.1007/s11103-004-7507-3.

    Article  PubMed  CAS  Google Scholar 

  • Duodu K. G.; Nunes A.; Delgadillo I.; Parker M. L.; Mills E. N. C.; Belton P. S.; Taylor J. R. N. Effect of grain structure and cooking on sorghum and maize in vitro protein digestibility. J. Cereal Sci. 35: 161–174; 2002. doi:10.1006/jcrs.2001.0411.

    Article  CAS  Google Scholar 

  • Duodu K. G.; Taylor J. R. N.; Belton P. S.; Hamaker B. R. Factors affecting sorghum protein digestibility. J. Cereal Sci. 38: 117–131; 2003. doi:10.1016/S0733-5210(03)00016-X.

    Article  CAS  Google Scholar 

  • Edwards A.; Marshall J.; Sidebottom C.; Visser R. G. F.; Smith A. M.; Martin C. Biochemical and molecular characterisation of a novel starch synthase from potato tubers. Plant J. 8: 283–294; 1995. doi:10.1046/j.1365-313X.1995.08020283.x.

    Article  PubMed  CAS  Google Scholar 

  • Emmambux N. M.; Taylor J. R. N. Sorghum kafirin interaction with various phenolic compounds. J. Sci. Food Agric. 83: 402–407; 2003.

    Article  CAS  Google Scholar 

  • Evers A. D.; Blakeney A. B.; O’Brien L. O. Cereal structure and composition. Aus. J. Agric. Res. 50: 629–650; 1999. doi:10.1071/AR98158.

    Article  Google Scholar 

  • Ezeogu L. I.; Duodu K. G.; Taylor J. R. N. Effects of endosperm texture and cooking conditions on the in vitro starch digestibility of sorghum and maize flours. J. Cereal Sci. 42: 33–44; 2005. doi:10.1016/j.jcs.2005.02.002.

    Article  CAS  Google Scholar 

  • Falco S. C.; Guida T.; Locke M.; Mauvais J.; Sanders C.; Ward R. T.; Webber P. Transgenic canola and soybean seeds with increased lysine. Nat. Biotechnol. 13: 577–582; 1995. doi:10.1038/nbt0695-577.

    Article  CAS  Google Scholar 

  • FAO. FAO Statistical Databases: http://faostat.fao.org; 2004.

  • Ferreira R. R.; Varisi V. A.; Meinhardt L. W.; Lea P. J.; Azevedo R. A. Are high-lysine cereal crops still a challenge? Braz. J. Med. Biol. Res. 38: 985–994; 2005.

    PubMed  CAS  Google Scholar 

  • Fincher G. B.; Stone B. A. Cell walls their components in cereal grain technology. Adv. Cereal Sci. Technol. 8: 207–295; 1986.

    CAS  Google Scholar 

  • Fornazier R. F.; Gaziola S. A.; Helm C. V.; Lea P. J.; Azevedo R. A. Isolation and characterization of enzymes involved in lysine catabolism from sorghum seeds. J. Agric. Food Chem. 53: 1791–1798; 2005. doi:10.1021/jf048525o.

    Article  PubMed  CAS  Google Scholar 

  • Frame B. R.; Shou H.; Chikwamba R. K.; Zhang Z.; Xiang C.; Fonger T. M.; Pegg S. E. K.; Li B.; Nettleton D. S.; Pei D.; Wang K. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129: 13–22; 2002. doi:10.1104/pp.000653.

    Article  PubMed  CAS  Google Scholar 

  • Frame B. R.; Zhang H.; Coccioline S. M.; Siderenko L. V.; Dietrich C. R.; Pegg S. E.; Zhen S.; Schabel P. S.; Wang K. Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell. Dev. Biol.-Plant 36: 21–29; 2000. doi:10.1007/s11627-000-0007-5.

    Article  Google Scholar 

  • Galili G. New insights into the regulation and functional significance of lysine metabolism in plants. Annu. Rev. Plant Biol. 53: 27–43; 2002. doi:10.1146/annurev.arplant.53.091401.110929.

    Article  PubMed  CAS  Google Scholar 

  • Galili G.; Höfgen R. Metabolic engineering of amino acids and storage proteins in plants. Metab. Eng. 4: 3–11; 2002. doi:10.1006/mben.2001.0203.

    Article  PubMed  CAS  Google Scholar 

  • Gao Z.; Xie X.; Ling Y.; Muthukrishnan S.; Liang G. Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotech. J. 3: 591–598; 2005. doi:10.1111/j.1467-7652.2005.00150.x.

    Article  CAS  Google Scholar 

  • Gelhaye E.; Rouhier N.; Jacquot J.-P. The thioredoxin h system of higher plants. Plant Physiol. Biochem. 42: 265–271; 2004. doi:10.1016/j.plaphy.2004.03.002.

    Article  PubMed  CAS  Google Scholar 

  • Gennadios A.; Rhim J. W.; Handa A.; Weller C. L.; Hanna M. A. Ultraviolet radiation affects physical and molecular properties of soy protein films. J. Food Sci. 63: 225–228; 1998.

    CAS  Google Scholar 

  • Gianibelli, M. C.; Larroque, O. R.; MacRitchie, F.; Wrigley, C. W. Biochemical, genetic, and molecular characterization of wheat endosperm proteins. Online Review, Cereal Chem. 2001.

  • Gibbon B. C.; Larkins B. A. Molecular genetic approaches to developing quality protein maize. Trends Genet. 21: 227–233; 2005. doi:10.1016/j.tig.2005.02.009.

    Article  PubMed  CAS  Google Scholar 

  • Goff S. A.; Cone K. C.; Chandler V. L. Functional analysis of the transcriptional activator encoded by the maize B gene—evidence for a direct functional interaction between 2 classes of regulatory proteins. Genes Dev. 6: 864–875; 1992. doi:10.1101/gad.6.5.864.

    Article  PubMed  CAS  Google Scholar 

  • Greenwall P.; Schofield J. D. A starch granule protein associated with endosperm softness in wheat. Cereal Chem. 63: 379–380; 1986.

    Google Scholar 

  • Grotewold E.; Chamberlain M.; St. Claire G.; Swenson J.; Siame B. A.; Butler L. G.; Snook M.; Bowen B. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10: 721–740; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hamaker, B. R.; Bugusu, B. A.; Sorghum proteins and food quality. In Belton, P. S.; Taylor, J. R. N. (eds) Afripro Conference Proceedings, www.afripro.org.uk. Paper 08; 2003.

  • Han X. Z.; Benmoussa M.; Gray J. A.; BeMiller J. N.; Hamaker B. R. Detection of proteins in starch granule channels. Cereal Chem. 82: 351–355; 2005. doi:10.1094/CC-82-0351.

    Article  CAS  Google Scholar 

  • Hiei Y.; Komari T.; Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282; 1994. doi:10.1046/j.1365-313X.1994.6020271.x.

    Article  PubMed  CAS  Google Scholar 

  • Hinchliffe D. J.; Kemp J. D. ß-Zein protein bodies sequester and protect the 18-kDa ß-zein protein from degradation. Plant Sci. 163: 741–752; 2002. doi:10.1016/S0168-9452(02)00177-2.

    Article  CAS  Google Scholar 

  • Hogberg A.; Lindberg J. E. Influence of cereal non-starch polysaccharides on digestion site and gut environment in growing pigs. Livest. Prod. Sci. 87: 121–130; 2004. doi:10.1016/j.livprodsci.2003.10.002.

    Article  Google Scholar 

  • Holland N.; Holland D.; Helentjaris T.; Dhugga K. S.; Xoconostle-Cazares B.; Delmer D. P. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol. 123: 1313–1323; 2000. doi:10.1104/pp.123.4.1313.

    Article  PubMed  CAS  Google Scholar 

  • Holtekjolen A. K.; Uhlen A. K.; Brathen E.; Sahlstrom S.; Knutsen S. H. Content of starch and non-starch polysaccharides in barley varieties of different origin. Food Chem. 94: 348–358; 2006. doi:10.1016/j.foodchem.2004.11.022.

    Article  CAS  Google Scholar 

  • Hong C. W.; Cheng K. J.; Tseng T. H.; Wang C. S.; Liu L. F.; Yu S. M. Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res. 13: 29–39; 2004. doi:10.1023/B:TRAG.0000017158.96765.67.

    Article  PubMed  CAS  Google Scholar 

  • Hrmova M.; Fincher G. B. Structure–function relationships of beta-d-glucan endo- and exohydrolases from higher plants. Plant Mol. Biol. 47: 73–91; 2001. doi:10.1023/A:1010619128894.

    Article  PubMed  CAS  Google Scholar 

  • Hu T.; Metz S.; Chay C.; Zhou H. P.; Biest N.; Chen G.; Cheng M.; Feng X.; Radionenko M.; Lu F.; Fry J. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep. 21: 1010–1019; 2003. doi:10.1007/s00299-003-0617-6.

    Article  PubMed  CAS  Google Scholar 

  • Huang S.; Adams W. R.; Zhou Q.; Malloy K. P.; Voyles D. A.; Anthony J.; Kriz A. L.; Luethy M. H. Improving nutritional quality of maize proteins by expressing sense and antisense zein genes. J. Agric. Food Chem. 52: 1958–1964; 2004. doi:10.1021/jf0342223.

    Article  PubMed  CAS  Google Scholar 

  • Huang S.; Kruger D. E.; Frizzi A.; D’Ordine R. L.; Florida C. A.; Adams W. R.; Brown W. E.; Luethy M. H. High-lysine corn produced by the combination of enhanced lysine biosynthesis and reduced zein accumulation. Plant Biotechnol. J. 3: 555–569; 2005. doi:10.1111/j.1467-7652.2005.00146.x.

    Article  PubMed  CAS  Google Scholar 

  • Hunter B. G.; Beatty M. K.; Singletary G. W.; Hamaker B. R.; Dilkes B. P.; Larkins B. A.; Jung R. Maize opaque endosperm mutations create extensive changes in patterns of gene expression. Plant Cell 14: 2591–2612; 2002. doi:10.1105/tpc.003905.

    Article  PubMed  CAS  Google Scholar 

  • Hurrell R. F.; Juillerat M. A.; Reddy M. B.; Lynch S. R.; Dassenko S. A.; Cook J. D. Soy protein, phytate and iron absorption in humans. Am. J. Clin. Nutr. 56: 573–578; 1992.

    PubMed  CAS  Google Scholar 

  • Hwang Y. S.; Ciceri P.; Parsons R. L.; Moose S. P.; Schmidt R. J.; Huang N. The maize O2 and PBF proteins act additively to promote transcription from storage protein gene promoters in rice endosperm cells. Plant Cell Physiol. 45: 1509–1518; 2004. doi:10.1093/pcp/pch173.

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo L.; Godwin I. D. Molecular characterization of a novel methionine-rich delta-kafirin seed storage protein gene in sorghum (Sorghum bicolor L.). Cereal Chem. 82: 706–710; 2005. doi:10.1094/CC-82-0706.

    Article  CAS  Google Scholar 

  • Jadhav S. J.; Lutz S. E.; Ghorpade V. M.; Salunkhe D. K. Barley: chemistry and value-added processing. Crit. Rev. Food Sci. Nutr. 38: 123–171; 1998. doi:10.1080/10408699891274183.

    Article  PubMed  CAS  Google Scholar 

  • James, C. International Service for the Acquisition of Agri-Biotech Applications. http://www.isaaa.org/; 2008.

  • Jobling S. Improving starch for food and industrial applications. Curr. Opin. Plant Sci. 7: 210–218; 2004. doi:10.1016/j.pbi.2003.12.001.

    Article  CAS  Google Scholar 

  • Jones H. D. Wheat transformation: current technology and applications to grain development and composition. J. Cereal Sci. 41: 137–147; 2005. doi:10.1016/j.jcs.2004.08.009.

    Article  CAS  Google Scholar 

  • Jouany, J. P. Rumen microbial metabolism and ruminant digestion. Institut National de la Recherche Agronomique, Paris; 1991.

  • Joudrier P.; Gautier M. F.; de Lamotte F.; Kobrehel K. The thioredoxin h system: potential applications. Biotechnol. Adv. 23: 81–85; 2005. doi:10.1016/j.biotechadv.2004.09.003.

    Article  PubMed  CAS  Google Scholar 

  • Kaliatzandonakes N. A farm-level perspective on agrobiotechnology: how much value for whom? AgBioForum 2: 61–64; 1999.

    Google Scholar 

  • Kim C. S.; Woo Y.-M.; Clore A. M.; Burnett R. J.; Carneiro N. P.; Larkins B. A. Zein protein interactions, rather than the asymmetric distribution of zein mRNAs on endoplasmic reticulum membranes, influences protein body formation in maize endosperm. Plant Cell 14: 655–672; 2002. doi:10.1105/tpc.010431.

    Article  PubMed  CAS  Google Scholar 

  • Koller A.; Washburn M. P.; Lange B. M.; Andon N. L.; Deciu C.; Haynes P. A.; Hays L.; Schieltz D.; Ulaszek R.; Wei J.; Woltes D.; Yates J. R. III Proteomic survey of metabolic pathways in rice. Proc. Natl. Acad. Sci. USA 99: 11969–11974; 2002. doi:10.1073/pnas.172183199.

    Article  PubMed  CAS  Google Scholar 

  • Kumari S. R.; Chandrashekar A. Relationship between grain vitreousness and the contents of prolamins and three anti-fungal proteins in sorghum. J. Cereal Sci. 20: 93–99; 1994. doi:10.1006/jcrs.1994.1049.

    Article  CAS  Google Scholar 

  • Larkins B. A.; Vasil I. K. Cellular and molecular biology of plant seed development. Kluwer, The Netherlands; 1997.

    Google Scholar 

  • Lechelt C.; Peterson T.; Laird A.; Chen J.; Dellaporta S. L.; Dennis E.; Peacock W. J.; Starlinger P. Isolation and molecular analysis of the maize P-locus. Mol. Gen. Genet. 219: 225–234; 1989. doi:10.1007/BF00261181.

    Article  PubMed  CAS  Google Scholar 

  • Lee T. T. T.; Chung M.-C.; Kao Y.-W.; Wang C.-S.; Chen L.-J.; Tzen J. T. C. Specific expression of a sesame storage protein in transgenic rice bran. J. Cereal Sci. 41: 23–29; 2005. doi:10.1016/j.jcs.2004.08.014.

    Article  CAS  Google Scholar 

  • Lending C. R.; Larkins B. A. Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1: 1011–1023; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Li Z.; Meyer S.; Essig J. S.; Liu Y.; Schapaugh M. A.; Muthukrishnan S.; Hainline B. E.; Trick H. N. High-level expression of maize γ-zein protein in transgenic soybean (Glycine max). Mol. Breed. 16: 11–20; 2005. doi:10.1007/s11032-004-7658-6.

    Article  CAS  Google Scholar 

  • Lin S.-K.; Chang M.-C.; Tsai Y.-G.; Lur H.-S. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5: 2140–2156; 2005. doi:10.1002/pmic.200401105.

    Article  PubMed  CAS  Google Scholar 

  • Lucca P.; Hurrell R.; Potrykus I. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. 102: 392–397; 2001. doi:10.1007/s001220051659.

    Article  CAS  Google Scholar 

  • MacGregor A. W.; Fincher G. B. Carbohydrates of the barley grain. In: MacGregor A. W.; Bhatty R. S. (eds) Barley: chemistry and technology. AACC, St. Paul, MN, pp 73–130; 1993.

    Google Scholar 

  • Macri L. J.; MacGregor A. W.; Schroeder S. W.; Bazin S. L. Detection of a limit dextrinase in inhibitor in barley. J. Cereal Sci. 18: 103–106; 1993. doi:10.1006/jcrs.1993.1038.

    Article  CAS  Google Scholar 

  • Marles M. A. S.; Ray H.; Gruber M. Y. New perspectives on proanthocyanin biochemistry and molecular regulation. Phytochemistry 64: 367–383; 2003. doi:10.1016/S0031-9422(03)00377-7.

    Article  PubMed  CAS  Google Scholar 

  • Mazur B.; Krebbers E.; Tingey S. Gene discovery and product development for grain quality traits. Science 285: 372–375; 1999. doi:10.1126/science.285.5426.372.

    Article  PubMed  CAS  Google Scholar 

  • Meng X.; Slominski B. A. Nutritive values of corn, soybean meal, canola meal, and peas for broiler chickens as affected by a multicarbohydrase preparation of cell wall degrading enzymes. Poult. Sci. 84: 1242–1251; 2005.

    PubMed  CAS  Google Scholar 

  • Meng F.; Wei Y.; Yang X. Iron content and bioavailability in rice. J. Trace Elem. Med. Biol. 18: 333–338; 2005. doi:10.1016/j.jtemb.2005.02.008.

    Article  PubMed  CAS  Google Scholar 

  • Mertz E. T.; Bates L. S.; Nelson O. E. Mutant gene that changes the protein composition and increases the lysine content of maize endosperm. Science 145: 279–280; 1964. doi:10.1126/science.145.3629.279.

    Article  PubMed  CAS  Google Scholar 

  • Morell M. K.; Kosar-Hashemi B.; Cmiel M.; Samuel M. S.; Chandler P.; Rahman S.; Buleon A.; Batey I. L.; Li Z. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J. 34: 173–185; 2003. doi:10.1046/j.1365-313X.2003.01712.x.

    Article  PubMed  CAS  Google Scholar 

  • Morell M. K.; Myers A. M. Towards the rational design of cereal starches. Curr. Opin. Plant Biol. 8: 204–210; 2005. doi:10.1016/j.pbi.2005.01.009.

    Article  PubMed  CAS  Google Scholar 

  • Morita T.; Kasaoka S.; Oh-hashi A.; Ikai M.; Numasaki Y.; Kiriyama S. Resistant proteins alter cecal short-chain fatty acid profiles in rats fed high amylose cornstarch. J. Nutr. 128: 1156–1164; 1998.

    PubMed  CAS  Google Scholar 

  • Morita T.; Kiriyama S. Mass production method for rice protein isolation and nutritional evaluation. J. Food Sci. 58: 1393–1397; 1993. doi:10.1111/j.1365-2621.1993.tb06190.x.

    Article  CAS  Google Scholar 

  • Nandi S.; Suzuki Y. A.; Huang J.; Yalda D.; Pham P.; Wu L.; Bartley G.; Huang N.; Lonnerdal B. Expression of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci. 163: 713–722; 2002. doi:10.1016/S0168-9452(02)00165-6.

    Article  CAS  Google Scholar 

  • Onyango B. M.; Nayga R. M. Consumer acceptance of nutritionally enhanced genetically modified food: relevance of gene transfer technology. J. Agric. Resource Econ. 29: 567–583; 2004.

    Google Scholar 

  • Oomen R. J. F. J.; Tzitzikas E. N.; Bakx E. J.; Straatman-Engelen I.; Bush M. S.; McCann M. C.; Schols H. A.; Visser R. G. F.; Vincken J.-P. Modulation of cellolose content of tuber cell walls by antisense expression of different potato (Solanum tuberosum L.) CesA clones. Phytochemistry 65: 535–546; 2004. doi:10.1016/j.phytochem.2003.12.019.

    Article  PubMed  CAS  Google Scholar 

  • Oria M. P.; Hamaker B. R.; Shull J. M. Resistance of sorghum α-, β-, and γ-kafirins to pepsin digestion. J. Agric. Food Chem. 43: 2148–2153; 1995. doi:10.1021/jf00056a036.

    Article  CAS  Google Scholar 

  • Paine J. A.; Shipton C. A.; Chaggar S.; Howells R. M.; Kennedy M. J.; Vernon G.; Wright S. Y.; Hinchliffe E.; Adams J. L.; Silverstone A. L.; Drake R. A new version of Golden Rice with increased pro-vitamin A content. Nat. Biotechnol. 23: 482–487; 2005. doi:10.1038/nbt1082.

    Article  PubMed  CAS  Google Scholar 

  • Pear J. R.; Kawagoe Y.; Schreckengost W. E.; Delmer D. P.; Stalker D. M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93: 12637–12642; 1996. doi:10.1073/pnas.93.22.12637.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen J. F.; Bean S. R.; Graybosch R. A.; Park S. H.; Tilley M. Characterization of waxy grain sorghum lines in relation to granule-bound starch synthase. Euphytica 144: 151–156; 2005. doi:10.1007/s10681-005-5298-5.

    Article  CAS  Google Scholar 

  • Potrykus I. Golden rice and beyond. Plant Physiol. 125: 1157–1161; 2001. doi:10.1104/pp.125.3.1157.

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I. Nutritionally enhanced rice to combat malnutrition disorders of the poor. Nutr. Rev. 61part 6: 101–104; 2003doi:10.1301/nr.2003.jun.101-104.

    Article  Google Scholar 

  • Prins R. A.; Stewart C. S. Micro-organisms in ruminant nutrition. Nottingham University Press, Nottingham; 1994.

    Google Scholar 

  • Rahman S.; Bird A.; Regina A.; Li Z.; Ral J. P.; McMaugh S.; Topping D.; Morell M. Resistant starch in cereals: Exploiting genetic engineering and genetic variation. J. Cereal Sci. 46: 251–260; 2007. doi:10.1016/j.jcs.2007.05.001.

    Article  CAS  Google Scholar 

  • Ray H.; Yu M.; Auser P.; Blahut-Beatty L.; McKersie B.; Bowley S.; Westcott N.; Coulman B.; Lloyd A.; Gruber M. Y. Expression of anthocyanin and proanthocyanidin following transformation of alfalfa with maize Lc. Plant Physiol. 132: 1–16; 2003. doi:10.1104/pp.103.025361.

    Article  CAS  Google Scholar 

  • Regina A.; Bird A.; Topping D.; Bowden S.; Freeman J.; Barsby T.; Kosar-Hashemi B.; Li Z.; Rahman S.; Morell M. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc. Natl. Acad. Sci. USA 103: 3546–3551; 2006. doi:10.1073/pnas.0510737103.

    Article  PubMed  CAS  Google Scholar 

  • Riley, P.; Hoffman, L. Value-enhanced crops: biotechnology’s next stage. Agricultural Outlook. March:18–23; 1999.

  • Roy S.; Weller C. L.; Gennadios A.; Zeece M. G.; Testin R. F. Physical and molecular properties of wheat gluten films cast from heated film-forming solutions. J. Food Sci. 64: 57–60; 1999. doi:10.1111/j.1365-2621.1999.tb09860.x.

    Article  CAS  Google Scholar 

  • Sainz M. B.; Grotewold E.; Chandler V. L. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell 9: 611–625; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Saxena I. M.; Brown R. M. Cellulose biosynthesis: current views and evolving concepts. Ann. Bot. 96: 9–21; 2005. doi:10.1093/aob/mci155.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R. J.; Burr F. A.; Burr B. Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 238: 960–963; 1987. doi:10.1126/science.2823388.

    Article  PubMed  CAS  Google Scholar 

  • Schure M.; Wessler S.; Federoff N. Molecular identification and isolation of the waxy locus in maize. Cell 35: 225–233; 1983. doi:10.1016/0092-8674(83)90225-8.

    Article  Google Scholar 

  • Seetharaman K.; Tziotis A.; Borras F.; White P. J.; Ferrer M.; Robutti J. Thermal and functional characterization of corn from the Argentinean germplasm. Cereal Chem. 78: 379–386; 2001. doi:10.1094/CCHEM.2001.78.4.379.

    Article  CAS  Google Scholar 

  • Segal G.; Song R.; Messing J. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165: 387–397; 2003.

    PubMed  CAS  Google Scholar 

  • Sharma S. B.; Dixon R. A. Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J. 44: 62–75; 2005. doi:10.1111/j.1365-313X.2005.02510.x.

    Article  PubMed  CAS  Google Scholar 

  • Sharma S. B.; Hancock K. R.; Ealing P. M.; White D. W. R. Expression of a sulfur-rich maize seed storage protein, γ-zein, in white clover (Trifolium repens) to improve forage quality. Mol. Breed. 4: 435–448; 1998. doi:10.1023/A:1009656002068.

    Article  CAS  Google Scholar 

  • Shaul O.; Galili G. Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol. Biol. 23: 759–768; 1993. doi:10.1007/BF00021531.

    Article  PubMed  CAS  Google Scholar 

  • Shewry P. R.; Halford N. G. Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53: 947–958; 2002. doi:10.1093/jexbot/53.370.947.

    Article  PubMed  CAS  Google Scholar 

  • Shewry P. R.; Jones H. D. Transgenic wheat: where do we stand after the first 12 years? Ann. Appl. Biol. 147: 1–14; 2005. doi:10.1111/j.1744-7348.2005.00009.x.

    Article  CAS  Google Scholar 

  • Shewry P. R.; Tatham A. S. Disulphide bonds in wheat gluten proteins. J. Cereal Sci. 25: 207–227; 1997. doi:10.1006/jcrs.1996.0100.

    Article  CAS  Google Scholar 

  • Shewry P. R.; Tatham A. S.; Barro F.; Barcelo P.; Lazzeri P. Biotechnology of breadmaking—unravelling and manipulating the multi-protein gluten complex. Bio/Technology 13: 1185–1190; 1995. doi:10.1038/nbt1195-1185.

    Article  CAS  Google Scholar 

  • Shirley B. W. Flavonoids in seeds and grains: physiological function, agronomic importance and the genetics of biosynthesis. Seed Sci. Res. 8: 412–422; 1998.

    Article  Google Scholar 

  • Skylas D. J.; Van Dyk D.; Wrigley C. W. Proteomics of wheat grain. J. Cereal Sci. 41: 165–179; 2005. doi:10.1016/j.jcs.2004.08.010.

    Article  CAS  Google Scholar 

  • Smidansky E. D.; Clancy M.; Meyers F. D.; Lanning S. P.; Blake N. K.; Talbert L. E.; Giroux M. J. Enhance ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc. Natl. Acad. Sci. USA 99: 1724–1729; 2002. doi:10.1073/pnas.022635299.

    Article  PubMed  CAS  Google Scholar 

  • Smidansky E.; Martin J.; Hannah L.; Fischer A.; Giroux M. Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216: 656–664; 2003.

    PubMed  CAS  Google Scholar 

  • Smith A. M. The biosynthesis of starch granules. Biomacromolecules 2: 335–341; 2001. doi:10.1021/bm000133c.

    Article  PubMed  CAS  Google Scholar 

  • Song R.; Llaca V.; Linton E.; Messing J. Sequence, regulation, and evolution of the maize 22-kDa α zein gene family. Genome Res. 11: 1817–1825; 2001.

    PubMed  CAS  Google Scholar 

  • Song R.; Segal G.; Messing J. Expression of the sorghum 10-member kafirin gene cluster in maize endosperm. Nucleic Acids Res. 32: e189; 2004. doi:10.1093/nar/gnh183.

    Article  PubMed  CAS  Google Scholar 

  • Spencer J. D.; Allee G. L.; Saubert T. E. Growth finishing performance and carcass characteristics of pigs fed normal and genetically modified low-phytate corn. J. Anim. Sci. 78: 1529–1536; 2000.

    PubMed  CAS  Google Scholar 

  • Stark D. M.; Timmerman K. P.; Barry G. F.; Priess J.; Kishore G. M. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258: 287–292; 1992. doi:10.1126/science.258.5080.287.

    Article  PubMed  CAS  Google Scholar 

  • Streatfield S. J.; Lane J. R.; Brooks C. R.; Barker D. K.; Poage M. L.; Mayor J. M.; Lamphear B. J.; Drees C. F.; Jilka J. M.; Hood E. E.; Howard J. A. Corn as a production system for human and animal vaccines. Vaccine 21: 812–815; 2003. doi:10.1016/S0264-410X(02)00605-9.

    Article  PubMed  CAS  Google Scholar 

  • Sun S. S. M.; Liu Q. Transgenic approaches to improve the nutritional quality of plant proteins. In Vitro Cell. Dev. Biol.-Plant 40: 155–162; 2004. doi:10.1079/IVP2003517.

    Article  CAS  Google Scholar 

  • Sweeten J. M. Livestock and poultry waste management: a national overview. In: Blake J.; Donald J.; Magette W. (eds) National livestock, poultry and aquaculture waste management. Amer. Soc. Agric. Eng., St Joseph, MI, pp 4–15; 1992.

    Google Scholar 

  • Tanaka K.; Murata K.; Yamazaki M.; Onosato K.; Miyao A.; Hirochika H. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 133: 73–83; 2003. doi:10.1104/pp.103.022442.

    Article  PubMed  CAS  Google Scholar 

  • Teli N. P.; Timko M. P. Recent developments in the use of transgenic plants for the production of human therapeutics and biopharmaceuticals. Plant Cell Tissue Organ Cult. 79: 125–145; 2004. doi:10.1007/s11240-004-0653-0.

    Article  CAS  Google Scholar 

  • Terada R.; Nakajima M.; Isshiki M.; Okagaki R. J.; Wessler S. R.; Shimamoto K. Antisense Waxy genes with highly active promoters effectively suppress Waxy gene expression in transgenic rice. Plant Cell Physiol. 41: 881–888; 2000. doi:10.1093/pcp/pcd008.

    Article  PubMed  CAS  Google Scholar 

  • Tetlow I. J.; Morell M. K.; Emes M. J. Recent developments in understanding the regulation of starch metabolism in higher plants. J. Exp. Bot. 55: 2131–2145; 2004. doi:10.1093/jxb/erh248.

    Article  PubMed  CAS  Google Scholar 

  • Topping D. Cereal complex carbohydrates and their contribution to human health. J. Cereal Sci. 46: 220–229; 2007. doi:10.1016/j.jcs.2007.06.004.

    Article  CAS  Google Scholar 

  • Topping D. L.; Clifton P. M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81: 1031–1064; 2001.

    PubMed  CAS  Google Scholar 

  • Topping D. L.; Gooden J. M.; Brown I. L.; Biebrick D. A.; McGrath L.; Trimble R. P.; Choct M.; Illman R. J. A high amylose (amylomaize) starch raises proximal large bowel starch and increases colon length in pigs. J. Nutr. 127: 615–622; 1997.

    PubMed  CAS  Google Scholar 

  • Vachon C.; D’Aprano G.; Lacroix M.; Letendre M. Effect of edible coating process and irradiation treatment of strawberry Fragaria spp. on storage-keeping quality. J. Food Sci. 68: 608–612; 2003. doi:10.1111/j.1365-2621.2003.tb05718.x.

    Article  CAS  Google Scholar 

  • Veum T. L.; Ledoux D. R.; Bollinger D. W. Low-phytic acid barley improves calcium and phosphorus utilization and growth performance in growing pigs. J. Anim. Sci. 80: 2663–2670; 2002.

    PubMed  CAS  Google Scholar 

  • Visser R. G. F.; Somhorst I.; Kuipers G. J.; Ruys N. J.; Feenstra W. J.; Jacobsen E. Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol. Gen. Genet. 225: 289–296; 1991. doi:10.1007/BF00269861.

    Article  PubMed  CAS  Google Scholar 

  • Vitale A.; Ceriotti A. Protein quality control mechanisms and protein storage in the endoplasmic reticulum. A conflict of interests? Plant Physiol. 136: 3420–3426; 2004. doi:10.1104/pp.104.050351.

    Article  PubMed  CAS  Google Scholar 

  • Washida H.; Sugina A.; Messing J.; Esen A.; Okita T. W. Asymmetric localization of seed storage protein RNAs to distinct subdomains of the endoplasmic reticulum in developing maize endosperm cells. Plant Cell Physiol. 45: 1830–1837; 2004 doi:10.1093/pcp/pch210.

    Article  PubMed  CAS  Google Scholar 

  • Weeks J. T.; Anderson O. D.; Blechl A. E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102: 1077–1084; 1993.

    PubMed  CAS  Google Scholar 

  • WHO. National strategies for overcoming micronutrient malnutrition. Geneva, Switzerland; 1992.

  • Wong J. H.; Kobrehel K.; Nimbona C.; Yee B. C.; Balogh A.; Kiss F.; Buchanan B. B. Thioredoxin and bread wheat. Cereal Chem. 70: 113–114; 1993.

    CAS  Google Scholar 

  • Woo Y.-M.; Hu D. W.-N.; Larkins B. A.; Jung R. Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. Plant Cell 13: 2297–2317; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Wood P. J. Cereal β-glucans in diet and health. J. Cereal Sci. 46: 230–238; 2007. doi:10.1016/j.jcs.2007.06.012.

    Article  CAS  Google Scholar 

  • Yamagata H.; Tanaka K. The site of synthesis and accumulation of rice storage proteins. Plant Cell Physiol. 27: 135–145; 1986.

    CAS  Google Scholar 

  • Ye X.; Al-Babili S.; Kloti A.; Zhang J.; Lucca P.; Beyer P.; Potrykus I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305; 2000. doi:10.1126/science.287.5451.303.

    Article  PubMed  CAS  Google Scholar 

  • Yoshino Y.; Hayashi M.; Seguchi M. Presence and amounts of starch granule surface proteins in various starches. Cereal Chem. 82: 739–742; 2005. doi:10.1094/CC-82-0739.

    Article  CAS  Google Scholar 

  • Zhang Y.; Darlington H.; Jones H. D.; Halford N. G.; Napier J. A.; Davey M. R.; Lazzeri P. A.; Shewry P. R. Expression of the gamma-zein protein of maize in seeds of transgenic barley: effects on grain composition and properties. Theor. Appl. Genet. 106: 1139–1146; 2003.

    PubMed  CAS  Google Scholar 

  • Zhu T.; Budworth P.; Chen W. Q.; Provart N.; Chang H. S.; Guimil S.; Su W. P.; Estes B.; Zou G. Z.; Wang X. Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotechnol. J. 1: 59–70; 2003. doi:10.1046/j.1467-7652.2003.00006.x.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Godwin.

Additional information

Editor: Prakash Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godwin, I.D., Williams, S.B., Pandit, P.S. et al. Multifunctional grains for the future: genetic engineering for enhanced and novel cereal quality. In Vitro Cell.Dev.Biol.-Plant 45, 383–399 (2009). https://doi.org/10.1007/s11627-008-9175-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9175-5

Keywords

Navigation