Skip to main content
Log in

A bacterial haloalkane dehalogenase (dhlA) gene as conditional negative selection marker for rice callus cells

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The dhlA gene of Xanthobacter autotrophicus encodes dehalogenase that hydrolyzes dihaloalkanes such as 1,2-dichloroethane (DCE) into cytotoxic halogenated alcohol and an inorganic halide. As plants do not contain dehalogenase activity, they grow normally in the presence of DCE. We tested the transgenic expression of the bacterial dhlA gene in rice as a conditional negative selection marker. We developed 24 transgenic callus lines containing dhlA gene driven by rice actin-1 promoter, verified the expression of dhlA by Northern blot analysis, and subjected these transgenic lines to DCE treatment. We found that, while untransformed callus (Nipponbare) was unaffected by the DCE treatment, most of the transformed lines displayed symptoms of toxicity, indicating that dhlA is an effective conditional negative selection marker gene for rice in vitro cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Breitler J. C.; Meynard D.; Van Boxtel J.; Royer M.; Bonnot F.; Cambillau L.; Guiderdoni E. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Res. 13: 271–287; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Chu C. C.; Wang C. C.; Sun C. S.; Hsu C.; Yin K. C.; Chu C. Y.; Bi F. Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18: 659–668; 1975.

    Google Scholar 

  • Cuellar W.; Gaudin A.; Solorzano D.; Casas A.; Nopo L.; Chudalayandi P.; Medrano G.; Kreuze J.; Ghishlain M. Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol. Biol. 62: 71–82; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Depicker A. G.; Jacobs A. M.; Van Montagu M. C. A negative selection scheme for tobacco protoplast-derived cells expressing the T-DNA gene 2. Plant Cell Rep. 7: 63–66; 1988.

    Article  CAS  Google Scholar 

  • Erikson O.; Hertzberg M.; Näsholm T. A conditional marker gene allowing both positive and negative selection in plants. Nat. Biotechnol. 22: 455–458; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Gleave A. P.; Mitra D. S.; Mudge S. R.; Morris B. A. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol. 40: 223–235; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y.; Ohta S.; Komari T.; Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271–282; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hoff T.; Schnorr K. M.; Mundy J. A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol. Biol. 45: 41–49; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Janssen D. B.; Pries F.; van der Ploeg J. R. Genetics and biochemistry of dehalogenating compounds. Ann. Rev. Microbiol. 48: 163–191; 1994.

    Article  CAS  Google Scholar 

  • Komari T.; Hiei Y.; Saito Y.; Murai N.; Kumashiro T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10: 165–174; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kondrak M.; van der Meer I. M.; Banfalvi Z. Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border Agrobacterium transformation vector. Transgenic Res. 15: 729–37; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Koukalova B.; Fojtova M.; Lim K. Y.; Fulnecek J.; Leitch A. R.; Kovarik A. Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations. Plant Physiol. 139: 275–86; 2005.

    Article  PubMed  CAS  Google Scholar 

  • McElroy D.; Blowers A. D.; Jenes B.; Wu R. Construction of expression vectors based on the rice actin 1 (Act1) 5¢ region for use in monocot transformation. Mol. Gen. Genet. 231: 150–60; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Murray M. G.; Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321–4325; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Naested H.; Fennema M.; Hao L.; Andersen M.; Janssen D. B.; Mundy J. A bacterial haloalkane dehalogenase gene as a negative selectable marker in Arabidopsis. Plant J. 18: 571–576; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Olhoft P. M.; Phillips R. L. Genetic and epigenetic instability in tissue culture and regenerated progenies. In: LernerH. R. (ed) Plant responses to environmental stresses: From phytohormones to genome reorganization. Marcel Dekker, New York, pp 111–148; 1999.

    Google Scholar 

  • Pawlowski W. P.; Somers D. A. Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc. Natl. Acad. Sci. U.S.A. 95: 12106–12110; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Risseeuw E.; Franke-van Dijk M. E.; Hooykaas P. J. Gene targeting and instability of Agrobacterium T-DNA loci in the plant genome. Plant J. 11: 717–728; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Scutt C. P.; Zubko E.; Meyer P. Techniques for the removal of marker genes from transgenic plants. Biochimie 84: 1119–1126; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Serino G.; Maliga P. A negative selection scheme based on the expression of cytosine deaminase in plastids. Plant J. 12: 697–701; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava V.; Ow D. W. Biolistic mediated site-specific integration in rice. Mol. Breed 8: 345–350; 2002.

    Article  Google Scholar 

  • Srivastava V.; Ow D. W. Marker-free site-specific gene integration in plants. Trends Biotechnol. 22: 627–629; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Stougaard J. Substrate-dependent negative selection in plants using a bacterial cytosine deaminase gene. Plant J. 3: 755–761; 1993.

    Article  CAS  Google Scholar 

  • Zhang W.; Subbarao S.; Addae P.; Shen A.; Armstrong C.; Peschke V.; Gilbertson L. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor. Appl. Genet. 107: 1157–1168; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Zuo J.; Niu Q. W.; Moller S. G.; Chua N. H. Chemical-regulated, site-specific DNA excision in transgenic plants. Nat. Biotechnol. 19: 157–161; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds received from USDA–CSREES and Division of Agriculture, University of Arkansas. The dhlA gene was obtained from David W. Ow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Srivastava.

Additional information

Editor: Gregory C. Phillips

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, S.K., Srivastava, V. A bacterial haloalkane dehalogenase (dhlA) gene as conditional negative selection marker for rice callus cells. In Vitro Cell.Dev.Biol.-Plant 44, 468–473 (2008). https://doi.org/10.1007/s11627-008-9144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9144-z

Keywords

Navigation