Skip to main content
Log in

Establishment of a gene function analysis system for the euhalophyte Salicornia europaea L.

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A Salicornia europaea L. in vitro cell transformation system was developed and further applied to SeNHX1 function investigation.

Abstract

The exploration of salt-tolerant genes from halophyte has seriously been limited by the lack of self-dependent transformation system. Here, an Agrobacterium tumefaciens-mediated in vitro cell transformation system of euhalophyte Salicornia europaea L. was developed. Calli derived from hypocotyl of S. europaea were co-cultured for 3 days with Agrobacterium at OD600 ranging from 1.0 to 1.5 and then selected with 25 mg/L hygromycin (Hyg). The transformed cells were identified from Hyg positive calli by GUS assay and qRT-PCR, and the transformation efficiency was up to 74.4%. The practicality of this system was further tested via genetic manipulation of S. europaea Na+/H+ antiporter 1 (SeNHX1) gene by creating the overexpressing, silencing, and empty vector cells. Survival ratio and Na+ distribution under salt treatment showed obvious differences in SeNHX1-overexpressing, -silencing, and empty vector cells, indicating the feasibility of this system to analyze gene function. This investigation is enlightening for studies in other non-model plants lacking of self-dependent transformation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FDA:

Diacetate

GUS:

β-Glucuronidase

Hyg:

Hygromycin

Kan:

Kanamycin

LB:

Luria–Bertani

MS:

Murashige and Skoog

NAA:

a-Naphthaleneacetic acid

PI:

Propidium iodide

TDZ:

Thidiazuron

TMT:

Ticarcillin

References

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Bao HXGDL, Guo J, Jia WT, Tai F, Nie LL, Jiang P, Feng JJ, Lv SL, Li YX (2014) Na+/H+ exchanger 1 participates in tobacco disease defence against Phytophthora parasitica var. nicotianae by affecting vacuolar pH and priming the antioxidative system. J Exp Bot 65:6107–6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XY, Bao HXGDL, Guo J, Jia WT, Li YX (2015) Overexpression of SeNHX1 improves both salt tolerance and disease resistance in tobacco. Plant Signal Behav 10:e993240

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalby DH (1962) Chromosome number, morphology and breeding behavior in the British Salicorniae. British Salicorniae 5:150–162

    Google Scholar 

  • Davy AJ, Bishop GF, Costa CSB (2001) Salicornia L. (Salicornia pusilla J. Woods, S. ramosissima J. Woods, S. europaea L., S. obscura P.W. Ball and Tutin, S. nitens P.W. Ball & Tutin, S. fragilis P.W. Ball & Tutin and S. dolichostachya Moss). J Ecol 89:681–707

    Article  Google Scholar 

  • Fan PX, Feng JJ, Jiang P, Chen XY, Bao HXGDL, Nie LL, Jiang D, Lv SL, Kuang TY, Li YX (2011) Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: comparative proteomic analysis on chloroplast proteins. Proteomics 11:4346–4367

    Article  CAS  PubMed  Google Scholar 

  • Fan PX, Nie LL, Jiang P, Feng JJ, Lv SL, Chen XY, Bao HXGDL, Guo J, Tai F, Wang JH, Jia WT, Li YX (2013) Transcriptome analysis of Salicornia europaea under saline conditions revealed the adaptive primary metabolic pathways as early events to facilitate salt adaptation. PLoS One 8:e80595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng JJ, Wang JH, Fan PX, Jia WT, Nie LL, Jiang P, Chen XY, Lv SL, Wan LC, Chang S, Li SZ, Li YX (2015) High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. BMC Plant Biol 15:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong H, Chen G, Li F, Wang X, Hu Y, Bi Y (2012) Involvement of G6PDH in heat stress tolerance in the calli from Przewalskia tangutica and Nicotiana tabacum. Biol Plantarum 56:422–430

    Article  CAS  Google Scholar 

  • Hasson E, Poljakoff-Mayber A (1995) Callus culture from hypocotyls of Kosteletzkya virginica (L.) seedlings. Plant Cell Tiss Org 43:279–285

    Google Scholar 

  • Hedenstrom HV, Breckle SW (1974) Obligate halophytes? A test with tissue culture methods. Z Pflanzenphysiol 74:183–185

    Article  Google Scholar 

  • Hu DG, Li M, Luo H, Dong QL, Yao YX, You CX, Hao YJ (2012) Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis. Plant Cell Rep 31:713–722

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru K (1999) Transformation of a CAM plant, the facultative halophyte Mesembryanthemum crystallinum by Agrobacterium tumefaciens. Plant Cell Tiss Org 57:61–63

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones KH, Senft JA (1985) An improved method to determine cells viability by simultaneous staining with fluorescein diacetate propidium iodide. J Histochem Cytochem 33:77–79

    Article  CAS  PubMed  Google Scholar 

  • Kusvuran S, Ellialtioglu S, Polat Z (2013) Antioxidative enzyme activity, lipid peroxidation, and proline accumulation in the callus tissues of salt and drought tolerant and sensitive pumpkin genotypes under chilling stress. Hortic Environ Biote 54:319–325

    Article  CAS  Google Scholar 

  • Li XG, Gallagher JL (1996) Expression of foreign genes, GUS and hygromycin resistance, in the halophyte Kosteletzkya virginica in response to bombardment with the Particle Inflow Gun. J Exp Bot 47:1437–1447

    Article  CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Ghane SG, Suprasanna P (2010) In vitro culture, plant regeneration and clonal behaviour of Sesuvium portulacastrum (L.) L.: a prospective halophyte. Physiol Mol Biol Plants 16:187–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv SL, Jiang P, Chen XY, Fan PX, Wang XC, Li YX (2012) Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiol Bioch 51:47–52

    Article  CAS  Google Scholar 

  • Ma C, Wang ZQ, Kong BB, Lin TB (2013a) Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery. Plant Growth Regul 70:275–285

    Article  CAS  Google Scholar 

  • Ma JB, Zhang MR, Xiao XL, You JJ, Wang JR, Wang T, Yao YA, Tian CY (2013b) Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment. PLoS One 8:e65877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narasimhulu SB, Deng X, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8:873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie LL, Feng JJ, Fan PX, Chen XY, Guo J, Lv SL, Bao HXGDL, Jia WT, Tai F, Jiang P, Wang JH, Li YX (2015) Comparative proteomics of root plasma membrane proteins reveals the involvement of calcium signalling in NaCl-facilitated nitrate uptake in Salicornia europaea. J Exp Bot 66:4497–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble SM, Davy AJ, Oliver RP (1992) Ribosomal DNA variation and population differentiation in Salicornia L. New Phytol 122:553–565

    Article  CAS  Google Scholar 

  • Park M, Lee H, Lee JS, Byun MO, Kim BG (2009) In planta measurements of Na+ using fluorescent dye CoroNa Green. J Plant Biol 52:298–302

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Rathore MS, Paliwal N, Anand KGV, Agarwal PK (2015) Somatic embryogenesis and in vitro plantlet regeneration in Salicornia brachiata Roxb. Plant Cell Tiss Org 120:355–360

    Article  CAS  Google Scholar 

  • Rozema J, Schat H (2013) Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ Exp Bot 92:83–95

    Article  CAS  Google Scholar 

  • Sedov KA, Fomenkov AA, Solov’yova AI, Nosov AV, Dolgikh YI (2014) The level of genetic variability of cells in prolonged suspension culture of Arabidopsis thaliana. Biology Bulletin 41:493–499

    Article  CAS  Google Scholar 

  • Sharma V, Ramawat KG (2014) Salt stress enhanced antioxidant response in callus of three halophytes (Salsola baryosma, Trianthema triquetra, Zygophyllum simplex) of Thar Desert. Biologia 69:178–185

    CAS  Google Scholar 

  • Shi XL, Han HP, Shi WL, Li YX (2006) NaCl and TDZ are two key factors for the improvement of in vitro regeneration rate of Salicornia europaea L. J Integr Plant Biol 48:1185–1189

    Article  CAS  Google Scholar 

  • Singh A, Jani K, Kumari P, Agarwal PK (2015) Effect of MgCl2 and double concentration of Murashige and Skoog medium on in vitro plantlet and root cultures generation in halophytic grasswort Salicornia brachiata. Plant Cell Tiss Org 120:563–570

    Article  CAS  Google Scholar 

  • Smith MK, McComb JA (1981) Effect of NaCl on the growth of whole plants and their corresponding callus cultures. Aust J Plant Physiol 8:267–275

    Article  CAS  Google Scholar 

  • Sun YL, Hong SK (2012) Agrobacterium tumefaciens-mediated transformation of the halophyte Leymus chinensis (Trin.). Plant Mol Biol Rep 30:1253–1263

    Article  CAS  Google Scholar 

  • Uchida A, Nagamiya K, Takabe T (2003) Transformation of Atriplex gmelini plants from callus lines using Agrobacterium tumefaciens. Plant Cell Tiss Org 75:151–157

    Article  CAS  Google Scholar 

  • Uno Y, Nakao S, Yamai Y, Koyama R, Kanechi M, Inagaki N (2009) Callus formation, plant regeneration, and transient expression in the halophyte sea aster (Aster tripolium L.). Plant Cell Tiss Org 98:303–309

    Article  CAS  Google Scholar 

  • Ushakova SA, Kovaleva NP, Gribovskaya TV, Dolgushev VA, Tikhomirova NA (2005) Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS. Adv Space Res 36:1349–1353

    Article  CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing maker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  CAS  PubMed  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (1999) Salt stress in Mesembryanthemum crystallinu L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta 207:426–435

    Article  CAS  PubMed  Google Scholar 

  • Wang XC, Fan PX, Song HM, Chen XY, Li XF, Li YX (2009) Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J Proteome Res 8:3331–3345

    Article  CAS  PubMed  Google Scholar 

  • Wilson GH, Grolig F, Kosegarten H (1998) Differential pH restoration after ammonia-elicited vacuolar alkalisation in rice and maize root hairs as measured by fluorescence ratio. Planta 206:154–161

    Article  CAS  Google Scholar 

  • Wu GX, Wang G, Ji J, Li Y, Gao HL, Wu J, Guan WZ (2015) A chimeric vacuolar Na+/H+ antiporter gene evolved by DNA family shuffling confers increased salt tolerance in yeast. J Biotechnol 203:1–8

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Ji J, Wang G, Yang SH, Zhao Q, Josine TL (2011) Over-expressing Salicornia europaea (SeNHX1) gene in tobacco improves tolerance to salt. Afr J Biotechnol 10:16452–16460

    CAS  Google Scholar 

  • Yang Y, Yang F, Li X, Shi R, Lu J (2013) Signal regulation of proline metabolism in callus of the halophyte Nitraria tangutorum Bobr. grown under salinity stress. Plant Cell Tiss Org 112:33–42

    Article  CAS  Google Scholar 

  • Yuan F, Chen M, Yang JC, Leng BY, Wang BS (2014) A system for the transformation and regeneration of the recretohalophyte Limonium bicolor. In Vitro Cell Dev Biol 50:610–617

    Article  Google Scholar 

  • Zhang LQ, Niu YD, Huridu H, Hao JF, Qi Z, Hasi A (2014) Salicornia europaea L. Na+/H+ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.). Genet Mol Res 13:5350–5360

    Article  CAS  PubMed  Google Scholar 

  • Zhao SZ, Ruan Y, Sun HZ, Wang BS (2008) Highly efficient Agrobacterium-based transformation system for callus cells of the C3 halophyte Suaeda salsa. Acta Physiol Plant 30:729–736

    Article  Google Scholar 

  • Zhou SF, Chen XY, Zhang XG, Li YX (2008) Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett 30:369–376

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research and Development Project of Transgenic Crops of China (Grant No. 2016ZX08009-003-002) and the National Natural Science Foundation of China (Grant No. 31270421). We would like to thank Professor Xuejun Hua from Institute of Botany, CAS for kindly providing plasmid pBISN1 with GUS gene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinxin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Emmanuel Guiderdoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, F., Lv, S., Jiang, P. et al. Establishment of a gene function analysis system for the euhalophyte Salicornia europaea L.. Plant Cell Rep 36, 1251–1261 (2017). https://doi.org/10.1007/s00299-017-2150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2150-z

Keywords

Navigation