Skip to main content
Log in

Genotype and plant growth regulator-dependent response of somatic embryogenesis from Gentiana spp. leaf explants

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Gentiana kurroo (Royle), Gentiana cruciata (L.), Gentiana tibetica (King. ex Hook. f.), Gentiana lutea (L.), and Gentiana pannonica (Scop.) leaves derived from axenic shoot culture were used as explants. For culture initiation, leaves from the first and second whorls from the apical dome were dissected and cultured on Murashige and Skoog (MS) basal medium supplemented with three different auxins: 2,4-dichlorophenoxyacetic acid, 1-naphthaleneacetic acid (NAA), or 3,6-dichloro-o-anisic acid (dicamba) in concentrations of 0.5, 1.0, or 2.0 mg/l; and five different cytokinins: zeatin, 6-furfurylamonopurine (kinetin), N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (TDZ), N-(2-chloro-4-pyridyl)N′-phenylurea, or 6-benzylaminopurine (BAP). The cytokinin concentrations used were dependent on the type of cytokinin and varied between 0.25 and 3.0 mg/l. After 2 mo. of culture, the morphogenic response of explants was assessed. Frequency of embryogenesis was the highest for G. kurroo (54.7%) and dependent on plant growth hormones (PGRs). This gentian was the only species showing morphogenic capabilities on media supplemented with all applied combinations of PGRs, while none of the 189 induction media permutations stimulated somatic embryogenesis from G. lutea explants. G. tibetica and G. cruciata both produced an average of 6.6 somatic embryos per explant, while G. pannonica and G. kurroo regenerated at 15.7 and 14.2 somatic embryos per explant, respectively. Optimum regeneration was achieved in the presence of NAA combined with BAP or TDZ. This auxin also stimulated abundant rhizogenesis. Somatic embryos were also regenerated from adventitious roots of G. kurroo, G. cruciata, and G. pannonica. Somatic embryos converted into plantlets on half strength MS medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Bach A.; Pawłowska B. Somatic embryogenesis in Gentiana pneumonanthe L. Acta Biol. Cracov. Bot. 45: 79–86; 2003.

    Google Scholar 

  • Bonacin G. A.; Di Mauro A. O.; Oliveira R. C.; Perecin D. Induction of somatic embryogenesis in soybean: physicochemical factors influencing the development of somatic embryos. Genet. Mol. Biol. 23: 4–12; 2000.

    Article  Google Scholar 

  • Brown D. C. W.; Finstad K. I.; Watson E. M. Somatic embryogenesis in herbaceous dicots. In: ThorpeA. T. (ed) In vitro embryogenesis in plants. Kluwer Academic, Dordrecht, pp 345–415; 1995.

    Google Scholar 

  • Canhoto J. C.; Lopes M. L.; Cruz G. S. Somatic embryogenesis and plant regeneration in myrtle (Myrtaceae). Plant Cell Tiss. Org. Cult. 57: 13–21; 1999.

    Article  Google Scholar 

  • Chavez V. M.; Litz R. E.; Norstog K. Somatic embryogenesis and organogenesis in Zamia fischeri, Z. furfuracea and Z. pumila. Plant Cell Tiss. Org. Cult. 30: 99–105; 1992.

    Article  CAS  Google Scholar 

  • Clarke R. T.; Thomas J. A.; Elmes G. W.; Wardlaw J. C.; Munguira M. L.; Hochberg M. E. Population modeling of the spatial interactions between Maculinea rebeli, their initial foodplant Gentiana cruciata and Myrmica ants within a site. J. Insect Conserv. 2: 29–37; 1998.

    Article  Google Scholar 

  • Craig W.; Wiegand A.; O’Neill C. M.; Mathias R. J.; Power J. B.; Davey M. R. Somatic embryogenesis and plant regeneration from stem explants of Moricandia arvensis. Plant Cell Rep. 17: 27–31; 1997.

    Article  CAS  Google Scholar 

  • Fay, M. F. Practical considerations in the development of a botanic garden micropropagation laboratory. Botanic gardens in changing world. The Proceedings of the Third International Botanic Gardens Conservation Congress. 19–25 October, Rio de Janeiro, Brazil; 1992.

  • Fiuk A.; Rajkiewicz M.; Rybczyński J. J. In vitro culture of Gentiana kurroo (Royle). Biotechnology. 62: 267–274; 2003.

    Google Scholar 

  • Guerra M. P.; Dal Vesco L. L.; Ducroquet J. P.; Nodari R. O.; Dos Reis M. S. Somatic embryogenesis in goober serrana: genotype response, auxinic shock and synthetic seeds. R. Bras. Fisiol. Veg. 13: 17–128; 2001.

    Google Scholar 

  • Hamama L.; Baaziz M.; Letouzé R. Somatic embryogenesis and plant regeneration from leaf tissue of jojoba. Plant Cell Tiss. Org. Cult. 65: 109–113; 2001.

    Article  CAS  Google Scholar 

  • Hempel M. Does micropropagation influence plant quality? Australian Hort. 56: 51–53; 1989.

    Google Scholar 

  • Hosokawa K.; Nakano M.; Oikawa Y.; Yamamura S. Adventitious shoot regeneration from leaf, stem and root explants of commercial cultivars of Gentiana. Plant Cell Rep. 15: 578–581; 1996.

    Article  CAS  Google Scholar 

  • Jain A.; Rout G. R.; Raina S. N. Somatic embryogenesis and plant regeneration from callus cultures of Phlox paniculata Linn. Sci. Hortic. 94: 137–143; 2002.

    Article  CAS  Google Scholar 

  • Karamian, R. Plantlet regeneration via somatic embryogenesis in four species of Crocus. In: J.-A. Fernández, F. Abdullaevs (eds) I International Symposium on Saffron Biology and Biotechnology. Acta Hort. 650: 10–15; 2004.

  • Kintzios S.; Manos C.; Makir O. Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell Rep. 18: 467–472; 1999.

    Article  CAS  Google Scholar 

  • Köhlein F. Gentians. Timber, Portland, Oregon; 1991.

    Google Scholar 

  • Kurtén U.; Nuutila A. M.; Kauppinen V.; Rousi M. Somatic embryogenesis in cell cultures of birch (Betula pendula Roth.). Plant Cell Tiss. Org. Cult. 23: 101–105; 1990.

    Article  Google Scholar 

  • Mandal A. K. A.; Gupta S. D.; Chatterji A. K. Factors affecting somatic embryogenesis cotyledonary explants of safflower. Biol. Plant. 44: 503–507; 2001.

    Article  Google Scholar 

  • Mikuła A.; Rybczyński J. J. Somatic embryogenesis of Gentiana genus I. The effect of the preculture treatment and primary explant origin on somatic embryogenesis of Gentiana cruciata (L.), G. pannonica (Scop.), and G. tibetica (King). Acta Physiol. Plant. 23: 15–25; 2001.

    Article  Google Scholar 

  • Mikuła A.; Rybczyński J. J.; Skierski J.; Latkowska M. J.; Fiuk A. Somatic embryogenesis of Gentiana genus IV.: Characterization of Gentiana cruciata and Gentiana tibetica embryogenic cell suspensions. In: Hvoslef-Eide A. K.; Preil W. (eds) Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 345–356; 2005.

    Chapter  Google Scholar 

  • Mikuła A.; Skierski J.; Rybczyński J. J. Somatic embryogenesis of Gentiana genus III. Characterization of three-year old embryogenic suspensions of G. pannonica originated from various seedling explants. Acta Physiol. Plant. 24: 311–322; 2002.

    Article  Google Scholar 

  • Mikuła, A.; Tykarska, T.; Kuraś, M.; Iwanowska, A.; Rybczyński, J. J. Studies on the morphogenic potential of gentians in cell suspension. Symposium Breeding Research on Medicinal and Aromatic Plants, Quedlinburg, Germany; 1996: pp. 290–295.

  • Momčilovič I.; Grubišić D.; Nešković M. Micropropagation of four Gentiana species (G. lutea, G. cruciata, G. purpurea, G. acaulis). Plant Cell Tiss. Org. Cult. 49: 141–144; 1997.

    Article  Google Scholar 

  • Morgan E. R.; Butler R. M.; Bicknell R. A. In vitro propagation of Gentiana cerina and Gentiana corymbifera. New Zeal. J. Crop. Hort. 25: 1–8; 1997.

    Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Pinto G.; Santos C.; Neves L.; Araújo C. Somatic embryogenesis and plant regeneration in Eucalyptus globulus Labill. Plant Cell Rep. 21: 208–213; 2002.

    Article  CAS  Google Scholar 

  • Sharma N.; Chandel K. P. S.; Paul A. In vitro propagation of Gentiana kurroo—an indigenous threatened plant of medicinal importance. Plant Cell Tiss. Org. Cult. 34: 307–309; 1993.

    Article  CAS  Google Scholar 

  • Thiem B.; Śliwińska E. Flow cytometric analysis of nuclear DNA content in cloudberry (Rubus chamaemorus L.) in vitro cultures. Plant Sci. 164: 129–134; 2003.

    Article  CAS  Google Scholar 

  • Vieitez A. M.; San-Jose C.; Vieitez F. J.; Ballester A. Somatic embryogenesis from roots of Camellia japonica plantlets cultured in vitro. J. Am. Soc. Hort. Sci. 116: 753–757; 1991.

    CAS  Google Scholar 

  • Zhang Q.; Chen J.; Henny R. J. Direct somatic embryogenesis and plant regeneration from leaf, petiole, and stem explants of Golden Pothos. Plant Cell Rep. 23: 587–595; 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Fiuk.

Additional information

Editor: Nigel Taylor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiuk, A., Rybczyński, J.J. Genotype and plant growth regulator-dependent response of somatic embryogenesis from Gentiana spp. leaf explants. In Vitro Cell.Dev.Biol.-Plant 44, 90–99 (2008). https://doi.org/10.1007/s11627-008-9124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9124-3

Keywords

Navigation