Skip to main content
Log in

Role of the Ror family receptors in Wnt5a signaling

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the β-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  • Afzal AR, Rajab A, Fenske CD, Oldridge M, Elanko N, Ternes-Pereira E, Tuysuz B, Murday VA, Patton MA, Wilkie AO, Jeffery S (2000) Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet 25:419–422

    Article  CAS  PubMed  Google Scholar 

  • Akbarzadeh S, Wheldon LM, Sweet SM, Talma S, Mardakheh FK, Heath JK (2008) The deleted in brachydactyly B domain of ROR2 is required for receptor activation by recruitment of Src. PLoS ONE 3:e1873

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Shawi R, Ashton SV, Underwood C, Simons JP (2001) Expression of the Ror1 and Ror2 receptor tyrosine kinase genes during mouse development. Dev Genes Evol 211:161–171

    Article  CAS  PubMed  Google Scholar 

  • Andre P, Wang Q, Wang N, Gao B, Schilit A, Halford MM, Stacker SA, Zhang X, Yang Y (2012) The Wnt coreceptor Ryk regulates Wnt/planar cell polarity by modulating the degradation of the core planar cell polarity component Vangl2. J Biol Chem 287:44518–44525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabzadeh S, Hossein G, Salehi-Dulabi Z, Zarnani AH (2016) WNT5A-ROR2 is induced by inflammatory mediators and is involved in the migration of human ovarian cancer cell line SKOV-3. Cell Mol Biol Lett 21:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Avincsal MO, Kamizaki K, Jimbo N, Shinomiya H, Nibu KI, Nishita M, Minami Y (2021) Oncogenic E6 and/or E7 proteins drive proliferation and invasion of human papilloma virus-positive head and neck squamous cell cancer through upregulation of Ror2 expression. Oncol Rep 46:148

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Tan X, Zhang H, Liu C, Zhao B, Li Y, Lu L, Liu Y, Zhou J (2014) Ror2 receptor mediates Wnt11 ligand signaling and affects convergence and extension movements in zebrafish. J Biol Chem 289:20664–20676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskar S, Kwong KY, Hofer T, Levy JM, Kennedy MG, Lee E, Staudt LM, Wilson WH, Wiestner A, Rader C (2008) Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin Cancer Res 14:396–404

    Article  CAS  PubMed  Google Scholar 

  • Bernatik O, Sedova K, Schille C, Ganji RS, Cervenka I, Trantirek L, Schambony A, Zdrahal Z, Bryja V (2014) Functional analysis of dishevelled-3 phosphorylation identifies distinct mechanisms driven by casein kinase 1ϵ and frizzled5. J Biol Chem 289:23520–23533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt PM, Malgor R (2014) Wnt5a: a player in the pathogenesis of atherosclerosis and other inflammatory disorders. Atherosclerosis 237:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowin CF, Kozielewicz P, Gratz L, Kowalski-Jahn M, Schihada H, Schulte G (2023) WNT stimulation induces dynamic conformational changes in the Frizzled-Dishevelled interaction. Sci Signal 16:eabo4974

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann EM, Mattes B, Kumar R, Hagemann AI, Gradl D, Scholpp S, Steinbeisser H, Kaufmann LT, Ozbek S (2016) Secreted Frizzled-related Protein 2 (sFRP2) redirects non-canonical Wnt signaling from Fz7 to Ror2 during vertebrate gastrulation. J Biol Chem 291:13730–13742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bromann PA, Korkaya H, Courtneidge SA (2004) The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23:7957–7968

    Article  CAS  PubMed  Google Scholar 

  • Bryja V, Schulte G, Rawal N, Grahn A, Arenas E (2007) Wnt-5a induces dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. J Cell Sci 120:586–595

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Wang X, Dai T, Wu Y, Zhang M, Cao R, Zhang R, Wang G, Jiang R, Zhou BP, Shi J, Kang T (2018) Twist promotes tumor metastasis in basal-like breast cancer by transcriptionally upregulating ROR1. Theranostics 8:2739–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrero I, Liu HC, Sikora AG, Milosavljevic A (2019) Histoepigenetic analysis of HPV- and tobacco-associated head and neck cancer identifies both subtype-specific and common therapeutic targets despite divergent microenvironments. Oncogene 38:3551–3568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha J, Bartos A, Park C, Sun X, Li Y, Cha SW, Ajima R, Ho HY, Yamaguchi TP, Dey SK (2014) Appropriate crypt formation in the uterus for embryo homing and implantation requires Wnt5a-ROR signaling. Cell Rep 8:382–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi MY, Widhopf GF 2nd, Ghia EM, Kidwell RL, Hasan MK, Yu J, Rassenti LZ, Chen L, Chen Y, Pittman E, Pu M, Messer K, Prussak CE, Castro JE, Jamieson C, Kipps TJ (2018) Phase I trial: cirmtuzumab inhibits ROR1 signaling and stemness signatures in patients with chronic lymphocytic leukemia. Cell Stem Cell 22(951–959):e953

    Google Scholar 

  • Coupe N, Guo L, Bridges E, Campo L, Espinosa O, Colling R, Marshall A, Nandakumar A, van Stiphout R, Buffa FM, Corrie PG, Middleton MR, Macaulay VM (2023) WNT5A-ROR2 axis mediates VEGF dependence of BRAF mutant melanoma. Cell Oncol (dordr) 46:391–407

    Article  CAS  PubMed  Google Scholar 

  • Cui B, Zhang S, Chen L, Yu J, Widhopf GF 2nd, Fecteau JF, Rassenti LZ, Kipps TJ (2013) Targeting ROR1 inhibits epithelial-mesenchymal transition and metastasis. Cancer Res 73:3649–3660

    Article  CAS  PubMed  Google Scholar 

  • Curto J, Del Valle-Perez B, Villarroel A, Fuertes G, Vinyoles M, Pena R, Garcia de Herreros A, Dunach M (2018) CK1epsilon and p120-catenin control Ror2 function in noncanonical Wnt signaling. Mol Oncol 12:611–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daneshmanesh AH, Mikaelsson E, Jeddi-Tehrani M, Bayat AA, Ghods R, Ostadkarampour M, Akhondi M, Lagercrantz S, Larsson C, Osterborg A, Shokri F, Mellstedt H, Rabbani H (2008) Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int J Cancer 123:1190–1195

    Article  CAS  PubMed  Google Scholar 

  • Dave Z, Vondalova Blanarova O, Cada S, Janovska P, Zezula N, Behal M, Hanakova K, Ganji SR, Krejci P, Gomoryova K, Peschelova H, Smida M, Zdrahal Z, Pavlova S, Kotaskova J, Pospisilova S, Bryja V (2022) Lyn phosphorylates and controls ROR1 surface dynamics during chemotaxis of CLL cells. Front Cell Dev Biol 10:838871

    Article  PubMed  PubMed Central  Google Scholar 

  • Dranow DB, Le Pabic P, Schilling TF (2023) The non-canonical Wnt receptor Ror2 is required for cartilage cell polarity and morphogenesis of the craniofacial skeleton in zebrafish. Development 150:dev201273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X, Gao Y, Liu Y (2017) Ryk regulates Wnt5a repulsion of mouse corticospinal tract through modulating planar cell polarity signaling. Cell Discov 3:17015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo M, Doi R, Nishita M, Minami Y (2012) Ror family receptor tyrosine kinases regulate the maintenance of neural progenitor cells in the developing neocortex. J Cell Sci 125:2017–2029

    CAS  PubMed  Google Scholar 

  • Endo M, Tanaka Y, Otsuka M, Minami Y (2020) E2F1-Ror2 signaling mediates coordinated transcriptional regulation to promote G1/S phase transition in bFGF-stimulated NIH/3T3 fibroblasts. Faseb J 34:3413–3428

    Article  CAS  PubMed  Google Scholar 

  • Endo M, Ubulkasim G, Kobayashi C, Onishi R, Aiba A, Minami Y (2017) Critical role of Ror2 receptor tyrosine kinase in regulating cell cycle progression of reactive astrocytes following brain injury. Glia 65:182–197

    Article  PubMed  Google Scholar 

  • Enomoto M, Hayakawa S, Itsukushima S, Ren DY, Matsuo M, Tamada K, Oneyama C, Okada M, Takumi T, Nishita M, Minami Y (2009) Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling. Oncogene 28:3197–3208

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Walsh CA (2004) The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat Cell Biol 6:1034–1038

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE, Widhopf GF 2nd, Rassenti LZ, Cantwell MJ, Prussak CE, Carson DA, Kipps TJ (2008) Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci U S A 105:3047–3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA, Andre P, Robinson J, Sood R, Minami Y, Economides AN, Yang Y (2011) Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell 20:163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentile A, Lazzari L, Benvenuti S, Trusolino L, Comoglio PM (2014) The ROR1 pseudokinase diversifies signaling outputs in MET-addicted cancer cells. Int J Cancer 135:2305–2316

    Article  CAS  PubMed  Google Scholar 

  • Gratz L, Kowalski-Jahn M, Scharf MM, Kozielewicz P, Jahn M, Bous J, Lambert NA, Gloriam DE, Schulte G (2023) Pathway selectivity in Frizzleds is achieved by conserved micro-switches defining pathway-determining, active conformations. Nat Commun 14:4573

    Article  PubMed  PubMed Central  Google Scholar 

  • Green J, Nusse R, van Amerongen R (2014) The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb Perspect Biol 6:a009175

    Article  PubMed  PubMed Central  Google Scholar 

  • Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN, Aaronson SA (2010) Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev 24:2517–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanakova K, Bernatik O, Kravec M, Micka M, Kumar J, Harnos J, Ovesna P, Paclikova P, Radsetoulal M, Potesil D, Tripsianes K, Cajanek L, Zdrahal Z, Bryja V (2019) Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs. Cell Commun Signal 17:170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao HX, Xie Y, Zhang Y, Charlat O, Oster E, Avello M, Lei H, Mickanin C, Liu D, Ruffner H, Mao X, Ma Q, Zamponi R, Bouwmeester T, Finan PM, Kirschner MW, Porter JA, Serluca FC, Cong F (2012) ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485:195–200

    Article  CAS  PubMed  Google Scholar 

  • Hasan MK, Ghia EM, Rassenti LZ, Widhopf GF 2nd, Kipps TJ (2021) Wnt5a enhances proliferation of chronic lymphocytic leukemia and ERK1/2 phosphorylation via a ROR1/DOCK2-dependent mechanism. Leukemia 35:1621–1630

    Article  CAS  PubMed  Google Scholar 

  • Hasan MK, Rassenti L, Widhopf GF 2nd, Yu J, Kipps TJ (2019a) Wnt5a causes ROR1 to complex and activate cortactin to enhance migration of chronic lymphocytic leukemia cells. Leukemia 33:653–661

    Article  CAS  PubMed  Google Scholar 

  • Hasan MK, Yu J, Chen L, Cui B, Widhopf Ii GF, Rassenti L, Shen Z, Briggs SP, Kipps TJ (2017) Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells. Leukemia 31:2615–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan MK, Widhopf GF 2nd, Zhang S, Lam SM, Shen Z, Briggs SP, Parker BA, Kipps TJ (2019b) Wnt5a induces ROR1 to recruit cortactin to promote breast-cancer migration and metastasis. NPJ Breast Cancer 5:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho HY, Susman MW, Bikoff JB, Ryu YK, Jonas AM, Hu L, Kuruvilla R, Greenberg ME (2012) Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc Natl Acad Sci U S A 109:4044–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Tang H, Liu Y, Li W, Shimu AS, Li B, Zhu C (2023) ROR1/STAT3 positive feedback loop facilitates cartilage degeneration in osteoarthritis through activation of NF-κB signaling pathway. Int Immunopharmacol 121:110433

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Nishita M, Hoshi K, Honda T, Kakeji Y, Minami Y (2020) Mesenchymal stem cell-derived CXCL16 promotes progression of gastric cancer cells by STAT3-mediated expression of Ror1. Cancer Sci 111:1254–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa T, Ogura Y, Tanaka K, Nagashima H, Sasayama T, Endo M, Minami Y (2023) Ror1 is expressed inducibly by Notch and hypoxia signaling and regulates stem cell-like property of glioblastoma cells. Cancer Sci 114:561–573

    Article  CAS  PubMed  Google Scholar 

  • Isomura H, Taguchi A, Kajino T, Asai N, Nakatochi M, Kato S, Suzuki K, Yanagisawa K, Suzuki M, Fujishita T, Yamaguchi T, Takahashi M, Takahashi T (2021) Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci 112:1614–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC (2012) Structural basis of Wnt recognition by Frizzled. Science 337:59–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janovska P, Poppova L, Plevova K, Plesingerova H, Behal M, Kaucka M, Ovesna P, Hlozkova M, Borsky M, Stehlikova O, Brychtova Y, Doubek M, Machalova M, Baskar S, Kozubik A, Pospisilova S, Pavlova S, Bryja V (2016) Autocrine signaling by Wnt-5a deregulates chemotaxis of leukemic cells and predicts clinical outcome in chronic lymphocytic leukemia. Clin Cancer Res 22:459–469

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Hao HX, Growney JD, Woolfenden S, Bottiglio C, Ng N, Lu B, Hsieh MH, Bagdasarian L, Meyer R, Smith TR, Avello M, Charlat O, Xie Y, Porter JA, Pan S, Liu J, McLaughlin ME, Cong F (2013) Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A 110:12649–12654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jopling C, den Hertog J (2005) Fyn/Yes and non-canonical Wnt signalling converge on RhoA in vertebrate gastrulation cell movements. EMBO Rep 6:426–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamizaki K, Doi R, Hayashi M, Saji T, Kanagawa M, Toda T, Fukada SI, Ho HH, Greenberg ME, Endo M, Minami Y (2017) The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle. J Biol Chem 292:15939–15951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kani S, Oishi I, Yamamoto H, Yoda A, Suzuki H, Nomachi A, Iozumi K, Nishita M, Kikuchi A, Takumi T, Minami Y (2004) The receptor tyrosine kinase Ror2 associates with and is activated by casein kinase Iepsilon. J Biol Chem 279:50102–50109

    Article  CAS  PubMed  Google Scholar 

  • Karvonen H, Perttila R, Niininen W, Barker H, Ungureanu D (2018) Targeting Wnt signaling pseudokinases in hematological cancers. Eur J Haematol 101:457–465

    Article  PubMed  Google Scholar 

  • Keeble TR, Halford MM, Seaman C, Kee N, Macheda M, Anderson RB, Stacker SA, Cooper HM (2006) The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J Neurosci 26:5840–5848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kibar Z, Vogan KJ, Groulx N, Justice MJ, Underhill DA, Gros P (2001) Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet 28:251–255

    Article  CAS  PubMed  Google Scholar 

  • Koo BK, Spit M, Jordens I, Low TY, Stange DE, van de Wetering M, van Es JH, Mohammed S, Heck AJ, Maurice MM, Clevers H (2012) Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488:665–669

    Article  CAS  PubMed  Google Scholar 

  • Lai SS, Xue B, Yang Y, Zhao L, Chu CS, Hao JY, Wen CJ (2012) Ror2-Src signaling in metastasis of mouse melanoma cells is inhibited by NRAGE. Cancer Genet 205:552–562

    Article  CAS  PubMed  Google Scholar 

  • Li P, Harris D, Liu Z, Liu J, Keating M, Estrov Z (2010) Stat3 activates the receptor tyrosine kinase like orphan receptor-1 gene in chronic lymphocytic leukemia cells. PLoS ONE 5:e11859

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Yamagata K, Nishita M, Endo M, Arfian N, Rikitake Y, Emoto N, Hirata K, Tanaka Y, Minami Y (2013) Activation of Wnt5a-Ror2 signaling associated with epithelial-to-mesenchymal transition of tubular epithelial cells during renal fibrosis. Genes Cells 18:608–619

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu J, Zhang T, Shi M, Chen X, Chen Y, Yu J (2020) Destabilization of ROR1 enhances activity of Ibrutinib against chronic lymphocytic leukemia in vivo. Pharmacol Res 151:104512

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM, Kipps TJ, Corr M, Carson DA (2004) Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 101:3118–3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyashenko N, Weissenbock M, Sharir A, Erben RG, Minami Y, Hartmann C (2010) Mice lacking the orphan receptor ror1 have distinct skeletal abnormalities and are growth retarded. Dev Dyn 239:2266–2277

    Article  CAS  PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda T, Nomi M, Ikeya M, Kani S, Oishi I, Terashima T, Takada S, Minami Y (2001) Expression of the receptor tyrosine kinase genes, Ror1 and Ror2, during mouse development. Mech Dev 105:153–156

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Suzuki H, Oishi I, Kani S, Kuroda Y, Komori T, Sasaki A, Watanabe K, Minami Y (2003) The receptor tyrosine kinase Ror2 associates with the melanoma-associated antigen (MAGE) family protein Dlxin-1 and regulates its intracellular distribution. J Biol Chem 278:29057–29064

    Article  CAS  PubMed  Google Scholar 

  • Menck K, Heinrichs S, Wlochowitz D, Sitte M, Noeding H, Janshoff A, Treiber H, Ruhwedel T, Schatlo B, von der Brelie C, Wiemann S, Pukrop T, Beissbarth T, Binder C, Bleckmann A (2021) WNT11/ROR2 signaling is associated with tumor invasion and poor survival in breast cancer. J Exp Clin Cancer Res 40:395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Xu Y, Ning X (2021) Tumor microenvironment acidity modulates ROR1 to promote epithelial-mesenchymal transition and hepatocarcinoma metastasis. J Cell Sci 134:jcs255349

    Article  CAS  PubMed  Google Scholar 

  • Mikels A, Minami Y, Nusse R (2009) Ror2 receptor requires tyrosine kinase activity to mediate Wnt5A signaling. J Biol Chem 284:30167–30176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffat LL, Robinson RE, Bakoulis A, Clark SG (2014) The conserved transmembrane RING finger protein PLR-1 downregulates Wnt signaling by reducing Frizzled, Ror and Ryk cell-surface levels in C. elegans. Development 141:617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morioka K, Tanikawa C, Ochi K, Daigo Y, Katagiri T, Kawano H, Kawaguchi H, Myoui A, Yoshikawa H, Naka N, Araki N, Kudawara I, Ieguchi M, Nakamura K, Nakamura Y, Matsuda K (2009) Orphan receptor tyrosine kinase ROR2 as a potential therapeutic target for osteosarcoma. Cancer Sci 100:1227–1233

    Article  CAS  PubMed  Google Scholar 

  • Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P (2001) Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum Mol Genet 10:2593–2601

    Article  CAS  PubMed  Google Scholar 

  • Nishita M, Itsukushima S, Nomachi A, Endo M, Wang Z, Inaba D, Qiao S, Takada S, Kikuchi A, Minami Y (2010) Ror2/Frizzled complex mediates Wnt5a-induced AP-1 activation by regulating Dishevelled polymerization. Mol Cell Biol 30:3610–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishita M, Kamizaki K, Hoshi K, Aruga K, Nishikaku I, Shibuya H, Matsumoto K, Minami Y (2023) Rho family small GTPase Rif regulates Wnt5a-Ror1-Dvl2 signaling and promotes lung adenocarcinoma progression. J Biol Chem 299:105248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishita M, Qiao S, Miyamoto M, Okinaka Y, Yamada M, Hashimoto R, Iijima K, Otani H, Hartmann C, Nishinakamura R, Minami Y (2014) Role of Wnt5a-Ror2 signaling in morphogenesis of the metanephric mesenchyme during ureteric budding. Mol Cell Biol 34:3096–3105

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishita M, Yoo SK, Nomachi A, Kani S, Sougawa N, Ohta Y, Takada S, Kikuchi A, Minami Y (2006) Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J Cell Biol 175:555–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomachi A, Nishita M, Inaba D, Enomoto M, Hamasaki M, Minami Y (2008) Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-binding protein filamin A. J Biol Chem 283:27973–27981

    Article  CAS  PubMed  Google Scholar 

  • Nomi M, Oishi I, Kani S, Suzuki H, Matsuda T, Yoda A, Kitamura M, Itoh K, Takeuchi S, Takeda K, Akira S, Ikeya M, Takada S, Minami Y (2001) Loss of mRor1 enhances the heart and skeletal abnormalities in mRor2-deficient mice: redundant and pleiotropic functions of mRor1 and mRor2 receptor tyrosine kinases. Mol Cell Biol 21:8329–8335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell MP, Fiori JL, Baugher KM, Indig FE, French AD, Camilli TC, Frank BP, Earley R, Hoek KS, Hasskamp JH, Elias EG, Taub DD, Bernier M, Weeraratna AT (2009) Wnt5A activates the calpain-mediated cleavage of filamin A. J Invest Dermatol 129:1782–1789

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connell MP, Fiori JL, Xu M, Carter AD, Frank BP, Camilli TC, French AD, Dissanayake SK, Indig FE, Bernier M, Taub DD, Hewitt SM, Weeraratna AT (2010) The orphan tyrosine kinase receptor, ROR2, mediates Wnt5A signaling in metastatic melanoma. Oncogene 29:34–44

    Article  PubMed  Google Scholar 

  • Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC, Mundlos S, Shibuya H, Takada S, Minami Y (2003) The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8:645–654

    Article  CAS  PubMed  Google Scholar 

  • Oishi I, Takeuchi S, Hashimoto R, Nagabukuro A, Ueda T, Liu ZJ, Hatta T, Akira S, Matsuda Y, Yamamura H, Otani H, Minami Y (1999) Spatio-temporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system. Genes Cells 4:41–56

    Article  CAS  PubMed  Google Scholar 

  • Osorio-Rodriguez DA, Camacho BA, Ramirez-Segura C (2023) Anti-ROR1 CAR-T cells: Architecture and performance. Front Med (lausanne) 10:1121020

    Article  PubMed  Google Scholar 

  • Ossipova O, Dhawan S, Sokol S, Green JB (2005) Distinct PAR-1 proteins function in different branches of Wnt signaling during vertebrate development. Dev Cell 8:829–841

    Article  CAS  PubMed  Google Scholar 

  • Paclikova P, Radaszkiewicz TW, Potesil D, Harnos J, Zdrahal Z, Bryja V (2021) Roles of individual human Dishevelled paralogs in the Wnt signalling pathways. Cell Signal 85:110058

    Article  CAS  PubMed  Google Scholar 

  • Paganoni S, Ferreira A (2003) Expression and subcellular localization of Ror tyrosine kinase receptors are developmentally regulated in cultured hippocampal neurons. J Neurosci Res 73:429–440

    Article  CAS  PubMed  Google Scholar 

  • Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23:7906–7909

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, McKay RM, McKay JP, Graff JM (1999) Casein kinase I transduces Wnt signals. Nature 401:345–350

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Okinaka Y, Nishita M, Minami Y (2016) Essential role of Wnt5a-Ror1/Ror2 signaling in metanephric mesenchyme and ureteric bud formation. Genes Cells 21:325–334

    Article  CAS  PubMed  Google Scholar 

  • Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP, Dai X, Chen P (2007) Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 306:121–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radaszkiewicz T, Noskova M, Gomoryova K, Vondalova Blanarova O, Radaszkiewicz KA, Pickova M, Vichova R, Gybel T, Kaiser K, Demkova L, Kucerova L, Barta T, Potesil D, Zdrahal Z, Soucek K, Bryja V (2021) RNF43 inhibits WNT5A-driven signaling and suppresses melanoma invasion and resistance to the targeted therapy. eLife 10:e65759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Niedenfuhr M, Prols F, Christ B (2004) Expression and regulation of ROR-1 during early avian limb development. Anat Embryol (berl) 207:495–502

    Article  PubMed  Google Scholar 

  • Roy JP, Halford MM, Stacker SA (2018) The biochemistry, signalling and disease relevance of RYK and other WNT-binding receptor tyrosine kinases. Growth Factors 36:15–40

    Article  CAS  PubMed  Google Scholar 

  • Saji T, Nishita M, Ikeda K, Endo M, Okada Y, Minami Y (2022) c-Src-mediated phosphorylation and activation of kinesin KIF1C promotes elongation of invadopodia in cancer cells. J Biol Chem 298:102090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schambony A, Wedlich D (2007) Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev Cell 12:779–792

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MHH, Dikic I (2005) The Cbl interactome and its functions. Nat Rev Mol Cell Biol 6:907–918

    Article  CAS  PubMed  Google Scholar 

  • Schwabe GC, Trepczik B, Suring K, Brieske N, Tucker AS, Sharpe PT, Minami Y, Mundlos S (2004) Ror2 knockout mouse as a model for the developmental pathology of autosomal recessive Robinow syndrome. Dev Dyn 229:400–410

    Article  CAS  PubMed  Google Scholar 

  • Schwarz-Romond T, Fiedler M, Shibata N, Butler PJ, Kikuchi A, Higuchi Y, Bienz M (2007a) The DIX domain of dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol 14:484–492

    Article  CAS  PubMed  Google Scholar 

  • Schwarz-Romond T, Metcalfe C, Bienz M (2007b) Dynamic recruitment of axin by dishevelled protein assemblies. J Cell Sci 120:2402–2412

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Zheng Q, Wang W, Xin N, Song X, Zhao C (2016) Biological functions of macrophage-derived Wnt5a, and its roles in human diseases. Oncotarget 7:67674–67684

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheetz JB, Mathea S, Karvonen H, Malhotra K, Chatterjee D, Niininen W, Perttilä R, Preuss F, Suresh K, Stayrook SE, Tsutsui Y, Radhakrishnan R, Ungureanu D, Knapp S, Lemmon MA (2020) Structural insights into pseudokinase domains of receptor tyrosine kinases. Mol Cell 79:390-405.e397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi F, Mendrola JM, Sheetz JB, Wu N, Sommer A, Speer KF, Noordermeer JN, Kan ZY, Perry K, Englander SW, Stayrook SE, Fradkin LG, Lemmon MA (2021) ROR and RYK extracellular region structures suggest that receptor tyrosine kinases have distinct WNT-recognition modes. Cell Rep 37:109834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Hu J, Chen W, Elliott G, Andre P, Gao B, Yang Y (2010) Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature 466:378–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sossin WS (2006) Tracing the evolution and function of the Trk superfamily of receptor tyrosine kinases. Brain Behav Evol 68:145–156

    Article  PubMed  Google Scholar 

  • Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145

    Article  CAS  PubMed  Google Scholar 

  • Strakova K, Kowalski-Jahn M, Gybel T, Valnohova J, Dhople VM, Harnos J, Bernatik O, Ganji RS, Zdrahal Z, Mulder J, Lindskog C, Bryja V, Schulte G (2018) Dishevelled enables casein kinase 1-mediated phosphorylation of Frizzled 6 required for cell membrane localization. J Biol Chem 293:18477–18493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takiguchi G, Nishita M, Kurita K, Kakeji Y, Minami Y (2016) Wnt5a-Ror2 signaling in mesenchymal stem cells promotes proliferation of gastric cancer cells by activating CXCL16-CXCR6 axis. Cancer Sci 107:290–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torban E, Patenaude AM, Leclerc S, Rakowiecki S, Gauthier S, Andelfinger G, Epstein DJ, Gros P (2008) Genetic interaction between members of the Vangl family causes neural tube defects in mice. Proc Natl Acad Sci U S A 105:3449–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara S, Udagawa N, Mukai H, Ishihara A, Maeda K, Yamashita T, Murakami K, Nishita M, Nakamura T, Kato S, Minami Y, Takahashi N, Kobayashi Y (2017) Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Sci Signal 10:eaan0023

    Article  PubMed  Google Scholar 

  • van Bokhoven H, Celli J, Kayserili H, van Beusekom E, Balci S, Brussel W, Skovby F, Kerr B, Percin EF, Akarsu N, Brunner HG (2000) Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet 25:423–426

    Article  PubMed  Google Scholar 

  • Veskimäe K, Scaravilli M, Niininen W, Karvonen H, Jaatinen S, Nykter M, Visakorpi T, Mäenpää J, Ungureanu D, Staff S (2018) Expression analysis of platinum sensitive and resistant epithelial ovarian cancer patient samples reveals new candidates for targeted therapies. Transl Oncol 11:1160–1170

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Guo N, Nathans J (2006) The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci 26:2147–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1:279–288

    Article  CAS  PubMed  Google Scholar 

  • Weissenböck M, Latham R, Nishita M, Wolff LI, Ho HH, Minami Y, Hartmann C (2019) Genetic interactions between Ror2 and Wnt9a, Ror1 and Wnt9a and Ror2 and Ror1: Phenotypic analysis of the limb skeleton and palate in compound mutants. Genes Cells 24:307–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Willert K, Brink M, Wodarz A, Varmus H, Nusse R (1997) Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J 16:3089–3096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witte F, Bernatik O, Kirchner K, Masek J, Mahl A, Krejci P, Mundlos S, Schambony A, Bryja V, Stricker S (2010) Negative regulation of Wnt signaling mediated by CK1-phosphorylated dishevelled via Ror2. FASEB J 24:2417–2426

    Article  CAS  PubMed  Google Scholar 

  • Wright TM, Rathmell WK (2010) Identification of Ror2 as a hypoxia-inducible factor target in von Hippel-Lindau-associated renal cell carcinoma. J Biol Chem 285:12916–12924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu YK, Nusse R (1998) The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr Biol 8:R405-406

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Udagawa J, Matsumoto A, Hashimoto R, Hatta T, Nishita M, Minami Y, Otani H (2010) Ror2 is required for midgut elongation during mouse development. Dev Dyn 239:941–953

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Hayashi M, Ida L, Yamamoto M, Lu C, Kajino T, Cheng J, Nakatochi M, Isomura H, Yamazaki M, Suzuki M, Fujimoto T, Takahashi T (2019) ROR1-CAVIN3 interaction required for caveolae-dependent endocytosis and pro-survival signaling in lung adenocarcinoma. Oncogene 38:5142–5157

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Yanagisawa K, Sugiyama R, Hosono Y, Shimada Y, Arima C, Kato S, Tomida S, Suzuki M, Osada H, Takahashi T (2012) NKX2-1/TITF1/TTF-1-Induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell 21:348–361

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi TP, Bradley A, McMahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211–1223

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Yoo SK, Nishita M, Kikuchi A, Minami Y (2007) Wnt5a modulates glycogen synthase kinase 3 to induce phosphorylation of receptor tyrosine kinase Ror2. Genes Cells 12:1215–1223

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Nishimura O, Misaki K, Nishita M, Minami Y, Yonemura S, Tarui H, Sasaki H (2008) Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell 15:23–36

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Lieu ZZ, Wolfenson H, Hameed FM, Bershadsky AD, Sheetz MP (2016) Mechanosensing Controlled Directly by Tyrosine Kinases. Nano Lett 16:5951–5961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Garrett L, Feng D, Elliott G, Liu X, Wang N, Wong YM, Choi NT, Yang Y, Gao B (2017) Wnt-induced Vangl2 phosphorylation is dose-dependently required for planar cell polarity in mammalian development. Cell Res 27:1466–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Chen L, Chen Y, Hasan MK, Ghia EM, Zhang L, Wu R, Rassenti LZ, Widhopf GF, Shen Z, Briggs SP, Kipps TJ (2017) Wnt5a induces ROR1 to associate with 14-3-3zeta for enhanced chemotaxis and proliferation of chronic lymphocytic leukemia cells. Leukemia 31:2608–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Chen L, Cui B, Widhopf GF 2nd, Shen Z, Wu R, Zhang L, Zhang S, Briggs SP, Kipps TJ (2016) Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation. J Clin Investig 126:585–598

    Article  PubMed  Google Scholar 

  • Zhang K, Yao E, Lin C, Chou YT, Wong J, Li J, Wolters PJ, Chuang PT (2020) A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis. eLife 9:e53688

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Chen L, Cui B, Chuang HY, Yu J, Wang-Rodriguez J, Tang L, Chen G, Basak GW, Kipps TJ (2012) ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS ONE 7:e31127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou AX, Hartwig JH, Akyurek LM (2010) Filamins in cell signaling, transcription and organ development. Trends Cell Biol 20:113–123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from JST Moonshot R&D [JPMJMS2022 (Y.M.)], the Japan Agency for Medical Research and Development (AMED) [18gm5010001s0901 (Y.M.)], and MEXT/JSPS KAKENHI [21K15504 (K.K.); 23K06678 (M.N.)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiru Nishita.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamizaki, K., Minami, Y. & Nishita, M. Role of the Ror family receptors in Wnt5a signaling. In Vitro Cell.Dev.Biol.-Animal (2024). https://doi.org/10.1007/s11626-024-00885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11626-024-00885-4

Keywords

Navigation