Skip to main content

Advertisement

Log in

A review on the use of geoelectrical methods for characterization and monitoring of contaminant plumes

  • Review Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Geophysical characterization of contaminated sites is an important procedure in pre- and post-site remediation. It has been carried out in several contaminated sites, irrespective of differences in site geology, nature of contaminants, and prevailing hydrological conditions. Electrical prospecting methods are the most used geophysical techniques for contaminant plume mapping. Due to this widespread use, there is an increasing number of literature on the use of electrical methods directed toward contaminant plume mapping. Yet, it lacks a comprehensive framework in literature that synthesizes the methods’ concepts, applications, and limitations. In this review, we summarized the use of electrical methods (electrical resistivity, self-potential, and induced polarization) in mapping contaminant plumes and provided a synthesis of concepts, applications, and limitations. The advantages, drawbacks, and the solutions achieved so far were emphasized in this review. Some of the advantages are that electrical methods are faster, cheaper, noninvasive and provide continuous images of contaminant plumes when compared to the traditional techniques. The drawbacks highlighted include the non-uniqueness of the vertical electrical sounding (VES), distortion effect of the 2D electrical resistivity tomography (ERT) and huge cost of 3D ERT data acquisition. We also highlighted other geophysical methods that could be used to map contaminant plumes. Conclusively, this review paper identified future research direction and offers insight into emerging issues associated with these techniques for better modeling of contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abreu AE, Gandolfo O, Vilar O (2016) Characterizing a Brazilian sanitary landfill using geophysical seismic techniques. Waste Manag 53:116–127

    Article  Google Scholar 

  • AGI (2016) https://www.agiusa.com/1d-resistivity-survey-vertical-electrical-sounding

  • Aizebeokhai AP (2010) 2D and 3D geoelectrical resistivity imaging: Theory and field design. Sci Res Essays 5(23):3592–3605

    Google Scholar 

  • Aizebeokhai AP, Olayinka AI (2010) Anomaly effects of arrays for 3d geoelectrical resistivity imaging using orthogonal or parallel 2d profiles. Afr J Environ Sci Technol 4:454–464

    Google Scholar 

  • Aizebeokhai AP, Olayinka AI, Singh VS (2010) Application of 2D and 3D geoelectrical resistivity imaging for engineering site investigation in a crystalline basement terrain, southwestern Nigeria. J Environ Earth Sci 61(7):1481–1492

    Article  Google Scholar 

  • Al-Garni M (2009) Geophysical investigations for groundwater in a complex subsurface terrain, Wadi Fatima, KSA: A case history. Jordan J Civil Eng. 3:118–136

    Google Scholar 

  • Ali NAM, Hamzah U, Sulaiman MAS (2013) International Laboratory Study of Contaminants Migration Pattern in Soil Using 2D Electrical Resistivity Tomography J Eng Res Technol (IJERT) 2(12) December 2013

  • Al-Menshed FH (2011) Evaluation of resistivity method in delineation ground water hydrocarbon contamination southwest of Karbala city. PhD Thesis, Dept. of Geology, College of Science, University of Baghdad, p 210

  • Amirkhani SF, Doulati AF, Moradzadeh A, Arab-Amiri AR (2013) Investigating the source of contaminated plumes downstream of the Alborz Sharghi coal washing plant using EM34 conductivity data, VLF-EM, and DC-resistivity geophysical methods. Explor Geophys 44(1):16–24

    Article  Google Scholar 

  • Aziz NA, Abdulrazzaq ZT, Agbasi OE (2019) Mapping of subsurface contamination zone using 3D electrical resistivity imaging in Hilla city. Iraq Environ Earth Sci 78:502. https://doi.org/10.1007/s12665-019-8520-9

    Article  Google Scholar 

  • Bassuk N, Grabosky J, Mucciardi A, Raffel G (2011) Ground penetrating radar accurately locates tree roots in two soil media under pavement. Arboricult Urban for 37:160–166

    Article  Google Scholar 

  • Bentley LR, Gharibi M (2004) Two- and three-dimensional electrical resistivity imaging at a heterogeneous remediation site. Geophysics. https://doi.org/10.1190/1.1759453

    Article  Google Scholar 

  • Bichet V, Grisey E, Aleya L (2016) Spatial characterization of leachate plume using electrical resistivity tomography in a landfill composed of old and new cells (Belfort, France). Eng Geol 211:61–73. https://doi.org/10.1016/j.enggeo.2016.06.026

    Article  Google Scholar 

  • Binley A, Hubbard SS, Huisman JA, Revil A, Robinson DA, Singha K, Slater LD (2015) The Emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res 51:3837–3866. https://doi.org/10.1002/2015WR017016

    Article  Google Scholar 

  • Bogan E, Doina S, Daniela V (2015) The impact of anthropogenic activities on components of the natural environment of the Titu Plain. GEOREVIEW: Scientific Annals of Stefan cel Mare University of Suceava. Geography Series. 24. https://doi.org/10.4316/GEOREVIEW.2014.24.1.170.

  • Cassiani G, Medina MA (1997) Incorporating auxiliary geophysical data into ground-water estimation. Ground Water 35(1):79–91

    Article  Google Scholar 

  • Cassiani G, Kemna A, Villa A, Zimmermann E (2009) Spectral induced polarization for the characterization of free-phase hydrocarbon contamination of sediments with low clay content. Near Surface Geophys. https://doi.org/10.3997/1873-0604.2009028

    Article  Google Scholar 

  • Cassiani G, Binley A, Kemna A, Wehrer M, Orozco AF, Deiana R, Boaga J, Rossi M, Dietrich P, Werban U (2014) Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals. Environ Sci Pollut R 21(15):8914–8931. https://doi.org/10.1007/s11356-014-2494-7

    Article  Google Scholar 

  • Castelluccio M, Agrahari S, De Simone G, Pompilj F, Lucchetti C, Sengupta D, Tuccimei P (2018) Using a multi-method approach based on soil radon deficit, resistivity, and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India. Environ Sci Pollut Res 25(13):12515–12527

    Article  Google Scholar 

  • Chambers JE, Ogilvy RD, Kuras O, Cripps JC, Meldrum PI (2002) 3D electrical imaging of known targets at a controlled environmental test site. Environ Geol 41(6):690–704. https://doi.org/10.1007/s00254-001-0452-4

    Article  Google Scholar 

  • Chávez RE, Tejero A, Cifuentes-Nava G, Hernández E, Aguilar D (2015) Imaging fractures beneath a residential com-plex using novel 3-D electrical resistivity arrays. J Environ Eng Geophys 20(2):219–233. https://doi.org/10.2113/JEEG20.3.219

    Article  Google Scholar 

  • Choudhury K, Saha DK, Chakraborty P (2001) Geophysical study for saline water intrusion in a coastal alluvial terrain. J Appl Geophys 46:189–200. https://doi.org/10.1016/S0926-9851(01)00038-6

    Article  Google Scholar 

  • Clément R, Descloitres M, Günther T, Ribolzi O, Legchenko A (2009) Influence of shallow infiltration on time-lapse ERT: experience of advanced interpretation. Comput Rendus Geosci 341:886–898

    Article  Google Scholar 

  • Clément R, Descloitres M, Günther T, Oxarango L, Morra C, Laurent JP, Gourc JP (2010) Improvement of electrical resistivity tomography for leachate injection monitoring. Waste Manag 30(3):452–464. https://doi.org/10.1016/j.wasman.2009.10.002

    Article  Google Scholar 

  • Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with ten electrode arrays. Geophys Prospect 52:379–398

    Article  Google Scholar 

  • Dahlin T, Bernstone C, Loke MH (2002) A 3-D resistivity investigation of a contaminated site at Lernacken. Swed Geophys 67(6):1692–1700. https://doi.org/10.1190/1.1527070

    Article  Google Scholar 

  • Day-Lewis FD, Slater LD, Robinson J, Johnson CD, Terry N, Werkema D (2017) An overview of geophysical technologies appropriates for characterization and monitoring at fractured-rock sites. J Environ Manag 204:709

    Article  Google Scholar 

  • De Iaco R, Horstmeyer H, Green A (1997) High-resolution, high-fold seismic reflection profile across a landfill. In: 3rd EEGS Meeting. European Association of Geoscientists & Engineers

  • Descloitres M, Ruiz L, Sekhar M, Legchenko A, Braun JJ, Kumar MSM, Subramanian S (2008) Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding. Hydrol Process 22(2008):384–394

    Article  Google Scholar 

  • Doussan C, Jouniaux L, Thony JL (2002) Temporal variations of SP and unsaturated water flow in loam and clay soils: a seasonal field study. J Hydrol 267:173–185

    Article  Google Scholar 

  • Emujakporue GO (2016) Self-potential investigation of contaminants in a dumpsite, University of Port Harcourt. Nigeria 57:140–148

    Google Scholar 

  • Essaid HI, Bekins BA, Cozzarelli IM (2015) Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding. Water Resour Res 51(7):4861–4902. https://doi.org/10.1002/2015WR017121

    Article  Google Scholar 

  • Fargier Y, Lopes SP, Fauchard C, François D, COTE P, (2014) DC-Electrical resistivity imaging for embankment dike investigation: a 3d extended normalization approach. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2014.02.007

    Article  Google Scholar 

  • Fatbardha V, Fatbardha C, Piro L (2010) Geochemical geophysical studies tecnogen pollution in Porto Romano, Albania, and their integration in GIS. J Int Environ Appl Sci 5(2):264–271

    Google Scholar 

  • Fernandez PM, Bloem E, Binley A, Philippe R, French H (2019) Monitoring redox sensitive conditions at the groundwater interface using electrical resistivity and self-potential. J Contam Hydrol 226:103517. https://doi.org/10.1016/j.jconhyd.2019.103517

    Article  Google Scholar 

  • Fox RW (1830) On the electromagnetic properties of metalliferous veins in the mines at Cornmall. Proc R Soc Lond 2:411

    Google Scholar 

  • Frid V, Liskevich G, Doudkinski D, Korostishevsky N (2008) Evaluation of landfill disposal boundary by means of electrical resistivity imaging. Environ Geol 53:1503–1508

    Article  Google Scholar 

  • Gaël D, Tanguy R, Nicolas M, Nguyen F (2017) Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2017.07.013

    Article  Google Scholar 

  • Germain RW, Einarson MD, Fure A, Chapman S, Parker B (2014) Dye based laser750 induced fluorescence sensing of chlorinated solvent DNAPLs. Conference proceedings, paper 1–14

  • Goebel M, Knight R, Halkjær M (2019) Mapping saltwater intrusion with an airborne electromagnetic method in the offshore coastal environment, Monterey Bay, California. J Hydrol Regional Stud 23:100602. https://doi.org/10.1016/j.ejrh.2019.100602

    Article  Google Scholar 

  • Halihan T, Paxton S, Graham I, Fenstemakerb T, Rileya M (2005) Post- remediation evaluation of a LNAPL site using electrical resistivity imaging. J Environ Monit 7:283–287

    Article  Google Scholar 

  • Hamilton SM (2000) Spontaneous potential and electrochemical cells. In: Handbook of exploration Geochemistry, (Elsevier, New York) p 81–119

  • He X, Koch J, Torben OS, Jorgensen F, Cyril S, Refsgaard JC (2014) Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data. Water Resour Res 50:3147–3169. https://doi.org/10.1002/2013WR014593

    Article  Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. Urban development series; knowledge papers no. 15. World Bank, Washington, DC. World Bank. https://openknowledge.worldbank.org/handle/10986/17388

  • Hubbard SS, Chen J, Peterson J, Majer EL, Williams KH, Swift DJ, Mailloux B, Rubin Y (2001) Hydrogeological characterization of the South Oyster bacterial transport site using geophysical data. Water Resour Res 37(10):2431–2456

    Article  Google Scholar 

  • Hung YC, Lin CP, Lee CT, Weng KW (2019) 3D and boundary effects on 2d electrical resistivity tomography. Appl Sci 9:2963. https://doi.org/10.3390/app915296

    Article  Google Scholar 

  • Jardani A, Revil A (2013) The self-potential method. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiang S, Liu J, Xia X, Wang Z, Cheng L, Li X (2021) Simultaneous identification of contaminant sources and hydraulic conductivity field by combining geostatistics method with self-organizing maps algorithm. J Contam Hydrol 241:103815

    Article  Google Scholar 

  • Jin S, Fallgren P, Cooper J, Morris J, Urynowicz M (2008) Assessment of diesel contamination in groundwater using electromagnetic induction geophysical techniques. J Environ Sci Health Part A 43:584–588

    Article  Google Scholar 

  • Kavazanjian E, Poran C, Satoh T, Matasovic N, Snow M (1994) Non-Intrusive Rayleigh Wave Investigations at Solid Waste Landfills

  • Kavazanjian E, Matasovic N, Bonaparte R, Schmertmann GR, (1995) Evaluation of MSW properties for seismic analysis Proceedings of the Specialty Conference on Geotechnical Practice in Waste Disposal New Orleans, LA, USA part 1 1126 1141

  • Kaya MA, Özürlan G, Şengül E (2007) Delineation of soil and groundwater contamination using geophysical methods at a waste disposal site in Çanakkale, Turkey. Environ Monit Assess 135:441–446. https://doi.org/10.1007/s10661-007-9662-x

    Article  Google Scholar 

  • Kearey P, Brooks M, Hill I (2002) An introduction to geophysical exploration, 3rd ed. ix + 262 pp. Oxford: Blackwell science. Price £29.95 (paperback). ISBN 0 632 04929 4. 140(3)

  • Kemna A, Binley A, Slater L (2004) Crosshole IP imaging for engineering and environmental applications. Geophysics 69:97–107

    Article  Google Scholar 

  • Kemna A, Binley A, Cassiani G, Niederleithinger E, Revil A, Slater L, Kruschwitz S (2012) An overview of the spectral induced polarization method for near-surface applications. Near Surf Geophys 10(6):453–468

    Article  Google Scholar 

  • Konstantaki LA, Ghose R, Draganov D, Diaferia G, Heimovaara T (2015) Characterization of a heterogeneous landfill using seismic and electrical resistivity data. Geophysics 80:EN13–EN25. https://doi.org/10.1190/geo2014-0263

    Article  Google Scholar 

  • Kuras O, Pritchard J, Meldrum PI, Chambers JE, Wilkinson PB, Ogilvy RD, Wealthall GP (2009) Monitoring hydraulic processes with Automated Time-Lapse Electrical Resistivity Tomography (ALERT). Comptes Rendus Geosci 341:868–885

    Article  Google Scholar 

  • Kuras O, Wilkinso PB, Meldrum PI, Oxby LS, Uhlemann S, Chambers JE, Binley A, Graham J, Smith NT, Atherton N (2016) Geoelectrical monitoring of simulated subsurface leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK. Sci Total Environ 566–567:350–359. https://doi.org/10.1016/j.scitotenv.2016.04.212

    Article  Google Scholar 

  • Lau AMP, Ferreira FJF, Stevanato R, Rosa Filho EF (2019) Geophysical and physicochemical investigations of an area contaminated by tannery waste: a case study from southern Brazil. Environ Earth Sci 78:517–533. https://doi.org/10.1007/s12665-019-8536-1

    Article  Google Scholar 

  • Laura E, Gorelick SM, Zebker HA (2014) Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta. Vietnam Environ Res Lett 9(8):084010. https://doi.org/10.1088/1748-9326/9/8/084010.ISSN1748-9326

    Article  Google Scholar 

  • Liu W, Lin P, Lü Q, Chen R, Cai H, Li J (2017) Time domain and frequency domain induced polarization modeling for three-dimensional anisotropic medium. J Environ Eng Geophys 22:435–439

    Article  Google Scholar 

  • Loke MH, Barker RD (1996) Practical techniques for 3D resistivity surveys and data inversion. Geophys Prospect 44(1996):449–523

    Google Scholar 

  • Loke M, Chambers J, Rucker D, Kuras O, Wilkinson P (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156. https://doi.org/10.1016/j.jappgeo.2013.02.017

    Article  Google Scholar 

  • Loke M, Wilkinson P, Chambers J, Meldrum P (2017) Rapid inversion of data from 2D resistivity surveys with electrode displacements. Geophys Prospect. https://doi.org/10.1111/1365-2478.12522

    Article  Google Scholar 

  • Loke MH (2000) Electrical imaging surveys for environmental and engineering studies. a practical guide to 2-D and 3-D surveys

  • Loke MH (2002) Electrical imaging surveys for environmental and engineering studies: a practical guide to 2D and 3D surveys: tutorial

  • Loke MH (2004) Tutorial: 2-D and 3D electrical imaging surveys. https ://sites.ualberta.ca/~unsworth/UA-classes/223/loke_course_notes .pdf

  • Maurya P, Rønde V, Fiandaca G, Balbarini N, Auken E, Bjerg P, Christiansen A (2017) Detailed landfill leachate plume mapping using 2D and 3D electrical resistivity tomography - with correlation to ionic strength measured in screens. J Appl Geophys 138:1–8

    Article  Google Scholar 

  • Maurya PK, Balbarini N, Møller I, Rønde V, Christiansen AV, Bjerg PL, Auken E (2018) Fiandaca, G (2018) Subsurface imaging of water electrical conductivity, hydraulic permeability, and lithology at contaminated sites by induced polarization. Geophys J Int 213(2):770–785. https://doi.org/10.1093/gji/ggy018

    Article  Google Scholar 

  • Meju MA (2000) Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach. J Appl Geophys 44:115–150

    Article  Google Scholar 

  • Mekonnen B, Haddis A, Zeine W (2020) Assessment of the effect of solid waste dump site on surrounding soil and river water quality in tepi town, Southwest Ethiopia. J Environ Public Health. https://doi.org/10.1155/2020/5157046

    Article  Google Scholar 

  • Mepaiyeda S, Madi K, Gwavava O, Baiyegunhi C, Sigabi L (2019) contaminant delineation of a landfill site using electrical resistivity and induced polarization methods in alice, Eastern Cape, South Africa. Int J Geophys. https://doi.org/10.1155/2019/5057832

    Article  Google Scholar 

  • Metwaly M, Elawadi EA, Moustafa SS, Al-Arifi N, El Alfy M, Al-Zaharani E (2014) Groundwater contamination assessment in the Al-Quwy’yia area of Central Saudi Arabia using transient electromagnetic and 2D electrical resistivity tomography. Environ Earth Sci 71(2):827–835

    Article  Google Scholar 

  • Miller CR, Routh PS, Brosten TR, McNamara JP (2008) Application of time-lapse ERT imaging to watershed characterization. Geophysics 73:G7–G17. https://doi.org/10.1190/1.290715

    Article  Google Scholar 

  • Moghaddam A, Dejpasand S, Rohani A, Parnow S, Ebrahimi M (2015) Detection and determination of groundwater contamination plume using time-lapse electrical resistivity tomography (ERT) method. J Mining Environ 8:103–110. https://doi.org/10.22044/jme.2015.523

    Article  Google Scholar 

  • Montes RV, Martínez-Graña AM, Martínez Catalán JR, Arribas PA, Sánchez San Román FJ, Zazo C (2017) Integration of GIS, electromagnetic and electrical methods in the delimitation of groundwater polluted by effluent discharge (Salamanca, Spain): a case study. Int J Environ Res Public Health 14:1369. https://doi.org/10.3390/ijerph14111369

    Article  Google Scholar 

  • Muntean OL (2005) Evaluarea impactului antropic asupra mediului, Casa Cărţii de Stiinţă

  • Naudet V, Gourry JC, Girard F, Mathieu F (2014) Saada A (2014) 3D electrical resistivity tomography to locate DNAPL contamination around a housing estate. Near Surf Geophys 12(3):351–436

    Article  Google Scholar 

  • Naudet V, Revil A, Bottero JY (2000) Geoelectrical methods applied on contaminated site: The Entressen and fill case study (South-Eastern France). In: 27th General Assembly of the European Geophysical Society (ASE), Avri, Nice

  • Nimmer RE, Osiensky JI (2002) Direct current and self-potential monitoring of an evolving plume in partially saturated fractured rock. J Hydrol 267:258–272

    Article  Google Scholar 

  • Okan EO (2015) Delineating groundwater contaminant plums using self-potential surveying method in Perth area, Australia. Int J Sci Technol Res 4(11):55–59

    Google Scholar 

  • Olaojo AA, Oladunjoye MA, Sanuade OA (2018) Geoelectrical assessment of polluted zone by sewage effluent in University of Ibadan campus southwestern Nigeria. Environ Monit Assess 190:24. https://doi.org/10.1007/s10661-017-6389-1

    Article  Google Scholar 

  • Olaseeni OG, Sanuade OA, Adebayo SS, Oladapo MI (2018) Integrated geoelectric and hydrochemical assessment of Ilokun dumpsite, Ado Ekiti, southwestern Nigeria. Kuwait J Sci 45(4):82–92

    Google Scholar 

  • Orlando L, Marchesi E (2001) Georadar as a tool to identify and characterize solid waste dump deposits. J Appl Geophys 48(2001):163–174

    Article  Google Scholar 

  • Orozco FA, Kemna A, Oberdörster C, Zschornack L, Leven C, Dietrich P (2012) Weiss H (2012) Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging. J Contam Hydrol 136–137:131–144. https://doi.org/10.1016/j.jconhyd.2012.06.001

    Article  Google Scholar 

  • Orozco AF, Ciampi P, Katona T, Censini M, Petrangeli PM, Deidd GP, Cassiani G (2021) Delineation of hydrocarbon contaminants with multi-frequency complex conductivity imaging. Sci Total Environ 768:144997. https://doi.org/10.1016/j.scitotenv.2021.144997

    Article  Google Scholar 

  • Osinowo OO, Agbaje MA, Ariyo SO (2020) Integrated geophysical investigation techniques for mapping cassava effluent leachate contamination plume, at a dumpsite in Ilero, southwestern Nigeria. Sci Afr 8:e00374. https://doi.org/10.1016/j.sciaf.2020.e00374

    Article  Google Scholar 

  • Park S, Yi M, Kim J, Shin SW (2016) Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled South Korea landfill. J Appl Geophys 135(2016):1–7

    Article  Google Scholar 

  • Patton S (2001) Optimierung von Salztracertests in Kombinationmit geoelektrischen Gleichstrom-Messungen zur Erkundung hydrogeologischer Fließparameter. Diplomarbeit, Geowissens chaftliche Fakulta ̈t der Universita ̈t Tu ̈bingen.

  • Perrier FE, Petiau G, Clerc G, Bogorodsky V, Erkul E, Jouniaux L, Lesmes D, Macnae J, Meunier JM, Morgan D, Nascimento D, Oettinger G, Schwarz G, Toh H, Valiant MJ, Vozoff K, Yazici-Cakin O (1997) A one-year systematic study of electrodes for long period measurements of the electric field in geophysical environments. J Geomagn Geoelectr 49:1677–1696

    Article  Google Scholar 

  • Petiau G (2000) Second generation of Lead-lead chloride electrodes for geophysical applications. Pure Appl Geophys 157(3):357–382

    Article  Google Scholar 

  • Pomposiello C, Favetto A., Ostera H (2004) Resistivity imaging and Ground Penetrating Radar survey at Gualeguaychú landfill, Entre Ríos Province, Argentina: evidence of a contamination plume. IAGA WG 1.2 on Electromagnetic induction in the earth proceedings of the 17th Workshop Hyderabad, India, October 18–23, 2004

  • Porsani JL, Filho WM, Vagner R, Elis FS, Dourado JC, Moura HP (2004) The use of GPR and VES in delineating a contamination plume in a landfill site: a case study in SE Brazil. J Appl Geophys 55(3–4):199–209. https://doi.org/10.1016/j.jappgeo.2003.11.001

    Article  Google Scholar 

  • Radulescu M, Valerian C, Yang JW (2007) Time-lapse electrical resistivity anomalies due to contaminant transport around landfills. Ann Geophys 50(3):453–468

    Google Scholar 

  • Rao GT, Rao VVSG, Padalu G, Dhakate R, Sarma VS (2014) Application of electrical resistivity tomography methods for delineation of groundwater contamination and potential zones. Arab J Geosci 7:1373–1384. https://doi.org/10.1007/s12517-013-0835-3

    Article  Google Scholar 

  • Revil A, Karaoulis M, Johnson T (2012) Kemna A (2012) Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 20:617–658. https://doi.org/10.1007/s10040-011-0819-x

    Article  Google Scholar 

  • Revil A, Florsch N, Mao D (2015a) Induced polarization response of porous media with metallic particles—Part 1: a theory for disseminated semiconductors. Geophysics 80(5):D525–D538

    Article  Google Scholar 

  • Revil A, Abdel Aal GZ, Atekwana EA, Mao D, Florsch N (2015b) Induced polarization response of porous media with metallic particles—Part 2: Comparison with a broad database of experimental data. Geophysics 80(5):D539–D552

    Article  Google Scholar 

  • Robinson DA, Binley A, Crook N, Day-Lewis FD, Ferré TPA, Grauch VJS, Knight R, Knoll M, Lakshmi V, Miller R, Nyquist J, Pellerin L, Singha K, Slater L (2008) Advancing process-based watershed hydrological research using near-surface geophysics: A vision for, and review of, electrical and magnetic geophysical methods. Hydrol Process 22(18):3604–3635. https://doi.org/10.1002/hyp.6963

    Article  Google Scholar 

  • Rosales RM, Martínez-Pagán P, Faz A, Bech J (2014) Study of subsoil in former petrol stations in SE of Spain: physicochemical characterization and hydrocarbon contamination assessment. J Geochem Explor 147:306–320. https://doi.org/10.1016/j.gexplo.2014.10.006

    Article  Google Scholar 

  • Sahadewa A, Zekkos D, Fei X, Li J, Zhao X (2014) Recurring shear wave velocity measurements at tshe smiths creek bioreactor landfill. Geotechnical special publication. 2072–2081. Doi: https://doi.org/10.1061/9780784413272.202

  • Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G (2005) Electrical resistivity survey in soil science: a review. Soil Tillage Res 83(2):173–193. https://doi.org/10.1016/j.still.2004.10.004

    Article  Google Scholar 

  • Santos MFA, Almeida EP, Castro R, Nolasco R, Mendes-Victor L (2002) A hydrogeological investigation using EM34 and SP surveys. Earth Planets Space 54:655–662

    Article  Google Scholar 

  • Sanuade OA, Amosun JO, Oyeyemi K, Olaojo A, Fagbemigun T, Faloyo J (2019) Analysis of principles of equivalence and suppression in resistivity sounding technique. J Phys Conf Ser 1299:012065. https://doi.org/10.1088/1742-6596/1299/1/012065

    Article  Google Scholar 

  • Sauck WA, Atekwana EA, Nash MS (1998) High conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. J Environ Eng Geophys 2:203–212

    Google Scholar 

  • Schlumberger C, Schlumberger M (1922) Phénomènes électriques produits par les gisements métalliques. C.R. Acad Des Sci 174:477–480

    Google Scholar 

  • Schlumberger C, Schlumberger M, Leonardon EG (1933) A New Contribution to Subsurface Studies by Means of Electrical Measurements in Drill Holes, T P. 503. Trans AIME 103:1–18

    Google Scholar 

  • Schwartz N, Furman A (2012) Spectral induced polarization signature of soil contaminated by organic pollutant: experiment and modeling. J Geophys Res Solid Earth, 117(B10)

  • Seigel HO, Vanhala H, Sheard SN (1997) Some case histories of source discrimination using time-domain spectral IP. Geophysics 62(5):1394–1408

    Article  Google Scholar 

  • Sharma PV (1997) Environmental and engineering geophysics. Cambridge University Press, UK, p 475

    Book  Google Scholar 

  • Shokri BJ, Ardejani FB, Moradzadeh A (2016) Mapping the flow pathways and contaminants transportation around a coal washing plant using the VLF-EM, Geo-electrical and IP techniques—A case NE Iran study. Environ Earth Sci 75:62. https://doi.org/10.1007/s12665-015-4776-x

    Article  Google Scholar 

  • Singha K, Gorelick SM (2005) Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis. Water Resour Res 41:W05023. https://doi.org/10.1029/2004WR003460

    Article  Google Scholar 

  • Slater L (2007) Surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries—a review. Surv Geophys 28:169–197. https://doi.org/10.1007/s10712-007-9022-y

    Article  Google Scholar 

  • Slater LD, Sandberg SK (2000) Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients. Geophysics 65(2):408–420

    Article  Google Scholar 

  • Smith KC, Dmello R (2016) Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-intercalation: porous-electrode modeling. J Electrochem Soc 163(3):A530

    Article  Google Scholar 

  • Sogade JA, Scira-Scappuzzo F, Vichabian Y, Shi WQ, Rodi W, Lesmes DP, Morgan FD (2006) Induced-polarization detection and mapping of contaminant plumes. Geophysics 71:B75–B84

    Article  Google Scholar 

  • Soupios PM, Georgakopoulos P, Papadopoulos N, Saltas V, Andreadakis A, Vallianatos F, Sarris A (2007) Makris JP (2007) Use of engineering geophysics to investigate a site for a building foundation. J Geophys Eng 4(1):94–103. https://doi.org/10.1088/1742-2132/4/1/011

    Article  Google Scholar 

  • Soupios P, Karaoulis M (2015) Application of self-potential (sp) method for monitoring contaminants movement. Doi: https://doi.org/10.3997/2214-4609.201414147

  • Sparrenbom CJ, Åkesson S, Johansson S, Hagerberg D, Dahlin T (2017) Investigation of chlorinated solvent pollution with resistivity and induced polarization. Sci Total Environ 575:767–778. https://doi.org/10.1016/j.scitotenv.2016.09.117

    Article  Google Scholar 

  • Srigutomo W, Agustine E (2016) Investigation of underground hydrocarbon leakage using ground penetrating radar. J Phys Conf Ser 739:01237. https://doi.org/10.1088/1742-6596/739/1/01237

    Article  Google Scholar 

  • Sudha A, Tezkan B, Israil M, Singhal DC, RaI J (2010) Geoelectrical mapping of aquifer contamination: a case study from Roorkee, India. Near Surf Geophys 8:33–42

    Article  Google Scholar 

  • Sultan A, Sultan S, Ahmed M, Santos FM (2009) Helaly AS (2009) Geophysical exploration for gold and associated minerals, case study: Wadi El Beida area Southeastern Desert, Egypt,. J Geophys Eng 6(4):345–356. https://doi.org/10.1088/1742-2132/6/4/002

    Article  Google Scholar 

  • Sundararajan N, Sankaran S, Tk AH (2012) Vertical electrical sounding (VES) and multi-electrode resistivity in environmental impact assessment studies over some selected lakes: a case study. Environ Earth Sci Environ Earth Sci. https://doi.org/10.1007/s12665-011-1132-7

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Resistivity methods. In: Applied geophysics, 2nd Edition, (Cambridge Univ. Press, Cambridge, UK) p 353–358. Doi: https://doi.org/10.1017/cbo9781139167932.012

  • Thabit JM, Khalid FH (2016) Resistivity imaging survey to delineate subsurface seepage of hydrocarbon contaminated water at Karbala Governorate Iraq. Environ Earth Sci 75:87. https://doi.org/10.1007/s12665-015-4880-y

    Article  Google Scholar 

  • Uhlemann S, Wilkinson P, Maurer H, Wagner F, Johnson T, Chambers J (2018) Optimized survey design for electrical resistivity tomography: combined optimization of measurement configuration and electrode placement. Geophys J Int 214:108–121. https://doi.org/10.1093/gji/ggy128

    Article  Google Scholar 

  • Ullah Z, Khan H, Waseem A, Mahmood Q, Farooq U (2013) Water quality assessment of the River Kabul at Peshawar, Pakistan: industrial and urban wastewater impacts. J Water Chem Technol 35:170–176

    Article  Google Scholar 

  • Ustra AT, Elis VR, Mondelli G, Zuquette LV, Giacheti HL (2012) Case study: a 3D resistivity and induced polarization imaging from downstream a waste disposal site in Brazil. Environ Earth Sci 66(3):763–772

    Article  Google Scholar 

  • Vanhala H, Soininen H, Kukkonen I (1992) Detecting organic chemical contaminants by spectral-induced polarization method in glacial till environment. Geophysics 57(8):1014–1017

    Article  Google Scholar 

  • Vaudelet P, Schmutz M, Pessel M, Franceschi M, Guérin R, Atteia O, Blondel A, Ngomseu C, Galaup S, Rejiba F, Bégassat P (2011) Mapping of contaminant plumes with geoelectrical methods. A case study in urban context. J Appl Geophys 75:738–751. https://doi.org/10.1016/j.jappgeo.2011.09.02

    Article  Google Scholar 

  • Versteeg R, Ankeny M, Harbour J, Heath G, Kostelnik K, Mattson E, Moor K, Richardson A, Wangerud K (2004) A structured approach to the use of near-surface geophysics in long-term monitoring. Lead Edge 23:700–703. https://doi.org/10.1190/1.1776745

    Article  Google Scholar 

  • Vichabian Y, Reppert P, Morgan FD (1999) Self-potential mapping of contaminants. Proc. Symp. Application of Geophysics to Engineering problems. 14–18, SAGEEP

  • Wang TP, Chen CC, Tong LT, Chang PY, Chen YC, Dong TH, Liu HC, Lin CP, Yang KH, Ho CH, Cheng SN (2015) Applying FDEM, ERT and GPR at a site with soil contamination: a case study. J Appl Geophys 121:21–30. https://doi.org/10.1016/j.jappgeo.2015.07.005

    Article  Google Scholar 

  • Wilkinson PB, Uhlemann S, Meldrum PI, Chambers JE, Carrière S, Lucy S (2015) Oxby, Loke MH (2015) Adaptive time-lapse optimized survey design for electrical resistivity tomography monitoring. Geophys J Int 203(1):755–766. https://doi.org/10.1093/gji/ggv329

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Ahmed Ismail of the Boone Pickens School of Geology, Oklahoma State University, for reading and improving the manuscript. We also thank the editor and anonymous reviewers for their suggestions that improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolawole Isaac Arowoogun.

Ethics declarations

Conflict of interest

The authors (Oluseun Adetola Sanuade, Kolawole Isaac Arowoogun, and Joel Olayide Amosun) declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Edited by Prof. Sanyi Yuan (ASSOCIATE EDITOR).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanuade, O.A., Arowoogun, K.I. & Amosun, J.O. A review on the use of geoelectrical methods for characterization and monitoring of contaminant plumes. Acta Geophys. 70, 2099–2117 (2022). https://doi.org/10.1007/s11600-022-00858-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-022-00858-9

Keywords

Navigation