Skip to main content
Log in

Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals

  • New approaches for low-invasive contaminated site characterization, monitoring and modelling
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site’s heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site’s mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdel Aal GZ, Slater LD, Atekwana EA (2006) Induced-polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation. Geophysics 71:H13–H24

    Article  Google Scholar 

  • Annan AP (2005) GPR methods for hydrogeological studies. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics, Ser. 50. Springer, Dordrecht, pp 185–214

    Chapter  Google Scholar 

  • Arato A, Wehrer M, Biró B, Godio A (2013) Integration of geophysical, geochemical and microbiological data for a comprehensive small-scale characterization of an aged LNAPL-contaminated site. Environ Sci Pollut Res. doi:10.1007/s11356-013-2171-2, this issue

    Google Scholar 

  • Atekwana EA, Atekwana EA (2010) Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surv Geophys 31:247–283. doi:10.1007/s10712-009-9089-8

    Article  Google Scholar 

  • Atekwana EA, Sauck WA, Werkema DD (2000) Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J ApplGeophys 44(2–3):167–180. doi:10.1016/S0926-9851(98)00033-0

    Google Scholar 

  • Atekwana EA, Sauck WA, Abdel Aal GZ, Werkema DD (2002) Geophysical investigation of vadose zone conductivity anomalies at a hydrocarbon contaminated site: implications for the assessment of intrinsic bioremediation. J Environ Eng Geophys 7:103–110

    Article  Google Scholar 

  • Atekwana EA, Atekwana EA, Werkema DD, Duris JW, Rossbach S, Sauck WA, Cassidy DP, Means J, Legall FD (2004a) In situ apparent conductivity measurements and microbial population distribution at a hydrocarbon-contaminated site. Geophysics 69(1):56–63. doi:10.1190/1.1649375

    Article  Google Scholar 

  • Atekwana EA, Atekwana EA, Rowe RS, Werkema DD, Legall FD (2004b) The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. J Appl Geophys 56:281–294

    Article  Google Scholar 

  • Atekwana EA, Atekwana E, Legall FD, Krishnamurthy RV (2004c) Field evidence for geophysical detection of subsurface zones of enhanced microbial activity. Geophys Res Lett 31, L23603

    Google Scholar 

  • Atekwana EA, Atekwana EA, Legall FD, Krishnamurthy RV (2005) Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer. J Contam Hydrol 80:149–167

    Article  CAS  Google Scholar 

  • Baedecker MJ, Cozzarelli IM, Eganhouse RP, Siegel DI, Bennett PC (1993) Crude-oil in a shallow sand gravel aquifer 3. Biogeochemical reactions and mass-balance modeling in anoxic groundwater. Appl Geochem 8(6):569–586. doi:10.1016/0883-2927(93)90014-8

    Article  CAS  Google Scholar 

  • Bekins BA, Cozzarelli IM, Godsy EM, Warren E, Essaid HI, Tuccillo ME (2001) Progression of natural attenuation processes at a crude oil spill site: II. Controls on a spatial distribution of microbial populations. J Contam Hydrol 53(3–4):387–406. doi:10.1016/S0169-7722(01)00175-9

    Article  CAS  Google Scholar 

  • Bennett PC, Siegel DE, Baedecker MJ, Hult MF (1993) Crude oil in a shallow sand and gravel aquifer: 1. Hydrogeology and inorganic geochemistry. Appl Geochem 8(6):529–549. doi:10.1016/0883-2927(93)90012-6

    Article  CAS  Google Scholar 

  • Benson AK, Payne KL, Stubben MA (1997) Mapping groundwater contamination using dc resistivity and VLF geophysical methods—a case study. Geophysics 62:80–86

    Article  Google Scholar 

  • Bermejo JL, Sauck WA, Atekwana EA (1997) Geophysical discovery of a new LNAPL plume at the former Wurtsmith AFB, Oscoda, Michigan. Ground Water Monit Remediat 17:131–137

    Article  Google Scholar 

  • Binley AM, Kemna A (2005) DC resistivity and induced polarization methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Water Sci. Technol. Library, Ser. 50. Springer, New York, pp 129–156

    Google Scholar 

  • Binley, A., Ramirez, A., Daily, W. (1995) Regularised image reconstruction of noisy electrical resistance tomography data. In: Beck MS, Hoyle BS, Morris MA, Waterfall RC, Williams RA (eds), Process tomography — 1995. Proceedings of the 4th Workshop of the European Concerted Action on Process Tomography, Bergen, 6–8 April 1995, pp. 401– 410.

  • Binley AM, Cassiani G, Deiana R (2011) Hydrogeophysics—opportunities and challenges. B GEOFIS TEOR APPL 51(4):267–284

    Google Scholar 

  • Bradford JH (2007) Frequency-dependent attenuation analysis of ground-penetrating radar data. Geophysics 72:J7–J16. doi:10.1190/1.2710183

    Article  Google Scholar 

  • Brandt CA, Becker JM, Porta A (2002) Distribution of polycyclic aromatic hydrocarbons in soils and terrestrial biota after a spill of crude oil in Trecate, Italy. Environ Toxicol Chem 21:1638–1643

    Article  CAS  Google Scholar 

  • Brovelli A, Malaguerra F, Barry DA (2009) Bioclogging in porous media: model development and sensitivity to initial conditions. Environ Model Softw 24:611–626

    Article  Google Scholar 

  • Burbery L, Cassiani G, Andreotti G, Ricchiuto T, Semple KT (2004) Well test and stable isotope analysis for the determination of sulphate-reducing activity in a fast aquifer contaminated by hydrocarbons. Environ Pollut 129(2):321–330

    Article  CAS  Google Scholar 

  • Cassiani G, Strobbia C, Gallotti L (2004) Vertical radar profiles for the characterization of deep vadose zones. Vadose Zone J 3:1093–1115

    Article  Google Scholar 

  • Cassiani G, Bruno V, Villa A, Fusi N, Binley AM (2006) A saline tracer test monitored via time-lapse surface electrical resistivity tomography. J Appl Geophys 59:244–259. doi:10.1016/j.jappgeo2005.10.007

    Article  Google Scholar 

  • Cassidy NJ (2007) Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: practical implications for hydrological studies. J Contam Hydrol 94:49–75

    Article  CAS  Google Scholar 

  • Che-Alota V, Atekwana EA, Atekwana EA, Sauck WA, Werkema DD (2009) Temporal geophysical signatures due to contaminant mass reduction. Geophysics 74(4):B113–B123. doi:10.1190/1.3139769

    Article  Google Scholar 

  • Chen J, Hubbard SS, Williams KH, Flores Orozco A, Kemna A (2012) Estimating the spatiotemporal distribution of geochemical parameters associated with biostimulation using spectral induced polarization data and hierarchical Bayesian models. Water Resour Res 48, W05555. doi:10.1029/2011WR010992

    Google Scholar 

  • Christensen TH, Bierg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen HJ (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45(3–4):165–241

    Article  CAS  Google Scholar 

  • Christensen O, Cassiani G, Diggle PJ, Ribeiro P, Andreotti G (2004) Statistical estimation of the relative efficiency of natural attenuation mechanisms in contaminated aquifers. Stoch Env Res Risk A 18:339–350

    Article  Google Scholar 

  • Daily W, Ramirez A, LaBrecque D, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28(5):1429–1442

    Article  Google Scholar 

  • Daily W, Ramirez A, LaBrecque D, Barber W (1995) Electrical-resistance tomography at the Oregon-Graduate-Institute. J Appl Geophys 33(4):227–237. doi:10.1016/0926-9851(95)00004-L

    Article  Google Scholar 

  • Deiana R, Cassiani G, Villa A, Bagliani A, Bruno V (2008) Model calibration of a water injection test in the vadose zone of the Po River plain using GPR cross-hole data. Vadose Zone J 7:215–226. doi:10.2136/vzj2006.0137

    Article  Google Scholar 

  • Everett M, Meju M (2005) Near-surface controlled-source electromagnetic induction. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Water Sci. Technol. Library, Ser. 50. Springer, New York, pp 157–183

    Google Scholar 

  • Flores Orozco A, Williams KH, Long PE, Hubbard SS, Kemna A (2011) Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer. J Geophys Res 116, G03001

    Google Scholar 

  • Flores Orozco A, Oberdorster C, Zschornack L, Leven C, Dietrich P, Weiss H (2012) Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging. J Contam Hydrol 136:131–144. doi:10.1016/j.jconhyd.2012.06.001

    Article  Google Scholar 

  • French HK, van der Zee SEATM, Meju M (2009) SoilCAM: soil contamination: advanced integrated characterisation and time-lapse monitoring. Rev Environ Sci Biotechnol 8:125–130. doi:10.1007/s11157-009-9158-y

    Article  CAS  Google Scholar 

  • Gasperikova E, Hubbard SS, Watson DB, Baker GS, Peterson JE, Kowalsky MB, Smith M, Brooks S (2012) Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior. J Contam Hydrol 142:33–49. doi:10.1016/j.jconhyd.2012.09.007

    Article  Google Scholar 

  • Kästner M, Cassiani G (2009) ModelPROBE: model driven soil probing, site assessment and evaluation. Rev Environ Sci Biotechnol 8:131–136. doi:10.1007/s11157-009-9157-z

    Article  Google Scholar 

  • Kemna A, Vanderborght J, Kulessa B, Vereecken H (2002) Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J Hydrol 267:125–146

    Article  CAS  Google Scholar 

  • LaBrecque DJ, Ramirez AL, Daily WD, Binley AM, Schima SA (1996) ERT monitoring of environmental remediation processes. Meas Sci Technol 7(3):375–383

    Article  CAS  Google Scholar 

  • Lee JY, Cheon JY, Lee KK, Lee SY, Lee MH (2001) Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer. J Contam Hydrol 50:139–158

    Article  CAS  Google Scholar 

  • Lopes de Castro D, Branco RMGC (2003) 4-D ground penetrating radar monitoring of a hydrocarbon leakage site in Fortaleza (Brazil) during its remediation process: a case history. J Appl Geophys 54:127–144

    Article  Google Scholar 

  • Lyngkilde J, Christensen TH (1992) Redox zones of a landfill leachate pollution plume (Vejen, Denmark). J Contam Hydrol 10(4):273–289

    Article  CAS  Google Scholar 

  • Mage R, Porta A (2001) Long-term biodegradation of underground and aquifer contamination at Trecate. In: Leeson A, Johnson PC, Hinchee RE, Semprini L, Magar VS (eds) In situ aeration and aerobic remediation book series: bioremediation series, vol 6, issue 10. 6th International In Situ and On-Site Bioremediation Symposium, San Diego, CA, 2001 June 4–7, pp 109–114.

  • Monego M, Cassiani G, Deiana R, Putti M, Passadore G, Altissimo L (2010) Tracer test in a shallow heterogeneous aquifer monitored via time-lapse surface ERT. Geophysics 75(4):WA61–WA73. doi:10.1190/1.3474601

    Article  Google Scholar 

  • Osella A, de la Vega M, Lascano E (2002) Characterization of a contaminant plume due to a hydrocarbon spill using geoelectrical methods. J Environ Eng Geophys 7:78–87

    Article  Google Scholar 

  • Perri MT, Cassiani G, Gervasio I, Deiana R, Binley AM (2012) A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: comparison of time-lapse results. J Appl Geophys 79:6–16. doi:10.1016/j.jappgeo.2011.12.011

    Article  Google Scholar 

  • Petts J. Cairney T, Smith M (1997) Risk-based contaminated land investigation and assessment. Wiley, ISBN: 978-0-471-96608-1, 352 pp

  • Pumphrey KM, Chrysikopoulos CV (2004) Non-aqueous phase liquid drop formation within a water saturated fracture. Colloids Surf A Physicochem Eng Asp 240(1–3):199–209

    Article  CAS  Google Scholar 

  • Revil A, Titov K, Doussan C, Lapenna V (2006) Applications of the self-potential method to hydrological problems. In: Vereecken H, Binley A, Cassiani G, Kharkhordin I, Revil A, Titov K (eds) Applied hydrogeophysics. Springer-Verlag, Berlin, pp 255–292

    Chapter  Google Scholar 

  • Rossi M, Cassiani G, Binley AM (2012) A stochastic analysis of cross-hole GPR zero-offset profiles for subsurface characterization. Vadose Zone J 11(4):CP9–+. doi:10.2136/vzj2011.0078

    Google Scholar 

  • Sauck WA, Atekwana EA, Nash MS (1998) High conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. J Environ Eng Geophys 2:203–212

    Google Scholar 

  • Schütze C, Vienken T, Werban U, Dietrich P, Finizola A, Leven C (2012) Joint application of geophysical methods and direct push soil gas surveys for the improved delineation of buried fault zones. J Appl Geophys 82(2012):129–136. doi:10.1016/j.jappgeo.2012.03.002

    Article  Google Scholar 

  • Sogade JA, Scira-Scappuzzo F, Vichabian Y, Shi WQ, Rodi W, Lesmes DP, Morgan FD (2006) Induced-polarization detection and mapping of contaminant plumes. Geophysics 71(3):B75–B84. doi:10.1190/1.2196873

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Tezkan B, Georgescu P, Fauzi U (2005) A radiomagnetotelluric survey on an oil-contaminated area near the Brazi Refinery, Romania. Geophys Prospect 53:311–323

    Article  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16:574–582

    Article  Google Scholar 

  • Werkema DD, Atekwana EA, Endres AL, Sauck WA, Cassidy DP (2003) Investigating the geoelectrical response of hydrocarbon contamination undergoing biodegradation. Geophys Res Lett 30:1647. doi:10.1029/2003GL017346

    Article  Google Scholar 

  • Willumsen PA, Karlson U (1997) Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7(5):415–423

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible by funding from the EU FP7 collaborative projects ModelPROBE “Model driven soil probing, site assessment and evaluation” and SoilCAM “Soil contamination: advanced integrated characterization and time-lapse monitoring.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Cassiani.

Additional information

Responsible editor: Michael Matthies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassiani, G., Binley, A., Kemna, A. et al. Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals. Environ Sci Pollut Res 21, 8914–8931 (2014). https://doi.org/10.1007/s11356-014-2494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2494-7

Keywords

Navigation