Skip to main content
Log in

An SDP method for fractional semi-infinite programming problems with SOS-convex polynomials

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we study a class of fractional semi-infinite polynomial programming problems involving sos-convex polynomial functions. For such a problem, by a conic reformulation proposed in our previous work and the quadratic modules associated with the index set, a hierarchy of semidefinite programming (SDP) relaxations can be constructed and convergent upper bounds of the optimum can be obtained. In this paper, by introducing Lasserre’s measure-based representation of nonnegative polynomials on the index set to the conic reformulation, we present a new SDP relaxation method for the considered problem. This method enables us to compute convergent lower bounds of the optimum and extract approximate minimizers. Moreover, for a set defined by infinitely many sos-convex polynomial inequalities, we obtain a procedure to construct a convergent sequence of outer approximations which have semidefinite representations (SDr). The convergence rate of the lower bounds and outer SDr approximations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The spotless_isos software package is available at: https://github.com/anirudhamajumdar/spotless/tree/spotless_isos.

References

  1. Ahmadi, A.A., Majumdar, A.: DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization. In: 2014 48th Annual Conference on Information Sciences and Systems (CISS), pp. 1–5 (2014)

  2. Ahmadi, A.A., Majumdar, A.: DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization. SIAM J. Appl. Algebra Geom. 3(2), 193–230 (2019)

    Article  MathSciNet  Google Scholar 

  3. Ahmadi, A.A., Olshevsky, A., Parrilo, P.A., Tsitsiklis, J.N.: NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Program. 137(1), 453–476 (2013)

    Article  MathSciNet  Google Scholar 

  4. Ahmadi, A.A., Parrilo, P.A.: A convex polynomial that is not sos-convex. Math. Program. 135(1), 275–292 (2012)

    Article  MathSciNet  Google Scholar 

  5. Baldoni, V., Berline, N., De Loera, J.A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Vergne, M., Wu, J.: A user’s guide for LattE integrale v1.7.2, 2013, software package LattE is available at http://www.math.ucdavis.edu/~latte/

  6. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MOS-SIAM series on optimization, Society for Industrial and Applied Mathematics (2001)

    Book  Google Scholar 

  7. Cánovas, M.J., Klatte, D., López, M.A., Parra, J.: Metric regularity in convex semi-infinite optimization under canonical perturbations. SIAM J. Optim. 18(3), 717–732 (2007)

    Article  MathSciNet  Google Scholar 

  8. de Klerk, E., Laurent, M.: Worst-case examples for Lasserre’s measure-based hierarchy for polynomial optimization on the hypercube. Math. Oper. Res. 45(1), 86–98 (2020)

    Article  MathSciNet  Google Scholar 

  9. de Klerk, E., Laurent, M., Sun, Z.: Convergence analysis for Lasserre’s measure-based hierarchy of upper bounds for polynomial optimization. Math. Program. 162(1), 363–392 (2017)

    Article  MathSciNet  Google Scholar 

  10. Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

    MathSciNet  Google Scholar 

  11. Folland, G.B.: How to integrate a polynomial over a sphere. Am Math. Mon. 108(5), 446–448 (2001)

    Article  MathSciNet  Google Scholar 

  12. Goberna, M. A., López, M. A.: Recent contributions to linear semi-infinite optimization. 4OR 15(3), 221–264 (2017)

    Article  MathSciNet  Google Scholar 

  13. Goberna, M.A., López, M.A.: Recent contributions to linear semi-infinite optimization: an update. Ann. Oper. Res. 271(1), 237–278 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gouveia, J., Parrilo, P., Thomas, R.: Theta bodies for polynomial ideals. SIAM J. Optim. 20(4), 2097–2118 (2010)

    Article  MathSciNet  Google Scholar 

  15. Guo, F., Jiao, L.: On solving a class of fractional semi-infinite polynomial programming problems. Comput. Optim. Appl. 80, 439–481 (2021)

    Article  MathSciNet  Google Scholar 

  16. Guo, F., Sun, X.: On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems. Comput. Optim. Appl. 75(3), 669–699 (2020)

    Article  MathSciNet  Google Scholar 

  17. Helton, J., Nie, J.: Sufficient and necessary conditions for semidefinite representability of convex hulls and sets. SIAM J. Optim. 20(2), 759–791 (2009)

    Article  MathSciNet  Google Scholar 

  18. Helton, J., Nie, J.: Semidefinite representation of convex sets. Math. Program. 122(1), 21–64 (2010)

    Article  MathSciNet  Google Scholar 

  19. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35(3), 380–429 (1993)

    Article  MathSciNet  Google Scholar 

  20. Josz, C., Henrion, D.: Strong duality in Lasserre’s hierarchy for polynomial optimization. Optim. Lett. 10(1), 3–10 (2016)

    Article  MathSciNet  Google Scholar 

  21. Sekitani, Y.Y.K., Shi, J.: General fractional programming: min-max convex-convex quadratic case. In: APORS-Development in Diversity and Harmony, pp. 505–514 (1995)

  22. Kroó, A.: Multivariate “needle’’ polynomials with application to norming sets and cubature formulas. Acta Math. Hung. 147(1), 46–72 (2015)

    Article  MathSciNet  Google Scholar 

  23. Kroó, A., Swetits, J.J.: On density of interpolation points, a Kadec-type theorem, and Saff’s principle of contamination in \({L}_p\)-approximation. Constr. Approx. 8(1), 87–103 (1992)

    Article  MathSciNet  Google Scholar 

  24. Lasserre, J. B.: Convex sets with semidefinite representation. Math. Program. Ser. A 120(2), 457–477 (2009)

    Article  MathSciNet  Google Scholar 

  25. Lasserre, J.B.: Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19(4), 1995–2014 (2009)

    Article  MathSciNet  Google Scholar 

  26. Lasserre, J.B.: A new look at nonnegativity on closed sets and polynomial optimization. SIAM J. Optim. 21(3), 864–885 (2011)

    Article  MathSciNet  Google Scholar 

  27. Lasserre, J.B.: An algorithm for semi-infinite polynomial optimization. TOP 20(1), 119–129 (2012)

    Article  MathSciNet  Google Scholar 

  28. Lasserre, J.B.: Tractable approximations of sets defined with quantifiers. Math. Program. 151(2), 507–527 (2015)

    Article  MathSciNet  Google Scholar 

  29. Lasserre, J.B.: Computing Gaussian & exponential measures of semi-algebraic sets. Adv. Appl. Math. 91, 137–163 (2017)

    Article  MathSciNet  Google Scholar 

  30. Lasserre, J.B.: Volume of sublevel sets of homogeneous polynomials. SIAM J. Appl. Algebra Geom. 3(2), 372–389 (2019)

    Article  MathSciNet  Google Scholar 

  31. Löfberg, J.: YALMIP : a toolbox for modeling and optimization in MATLAB. In: 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), pp. 284–289 (2004)

  32. López, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180(2), 491–518 (2007)

    Article  MathSciNet  Google Scholar 

  33. Magron, V., Henrion, D., Lasserre, J.: Semidefinite approximations of projections and polynomial images of semialgebraic sets. SIAM J. Optim. 25(4), 2143–2164 (2015)

    Article  MathSciNet  Google Scholar 

  34. Majumdar, A., Ahmadi, A.A., Tedrake, R.: Control and verification of high-dimensional systems with DSOS and SDSOS programming. In: 53rd IEEE Conference on Decision and Control, pp. 394–401 (2014)

  35. Megretski, A.: Systems polynomial optimization tools (SPOT). https://github.com/spot-toolbox/spotless (2010)

  36. Mosek, A.: The MOSEK optimization software. https://www.mosek.com/

  37. Nie, J.: Semidefinite representability. In: Blekherman, G., Parrilo, P.A., Thomas R.R., (eds.) Semidefinite Optimization and Convex Algebraic Geometry, MOS-SIAM Series on Optimization, chapter 6, pp. 251–291. Society for Industrial and Applied Mathematics, Philadelphia, PA (2012)

  38. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Glob. Optim. 1(1), 15–22 (1991)

    Article  MathSciNet  Google Scholar 

  39. Ponstein, J.: Seven kinds of convexity. SIAM Rev. 9(1), 115–119 (1967)

    Article  MathSciNet  Google Scholar 

  40. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  MathSciNet  Google Scholar 

  41. Rostalski, P.: Bermeja-software for convex algebraic geometry. http://math.berkeley.edu/~philipp/cagwiki (2010)

  42. Shapiro, A.: Semi-infinite programming, duality, discretization and optimality conditions. Optimzation 58(2), 133–161 (2009)

    Article  MathSciNet  Google Scholar 

  43. Shapiro, A., Scheinber, K.: Duality, optimality conditions and perturbation analysis. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming—Theory. Algorithms, and Applications, pp. 67–110. Kluwer Academic Publisher, Boston (2000)

  44. Slot, L., Laurent, M.: Improved convergence analysis of Lasserre’s measure-based upper bounds for polynomial minimization on compact sets. Math. Program. 193, 831–871 (2022)

    Article  MathSciNet  Google Scholar 

  45. Wang, L., Guo, F.: Semidefinite relaxations for semi-infinite polynomial programming. Comput. Optim. Appl. 58(1), 133–159 (2013)

    Article  MathSciNet  Google Scholar 

  46. Wang, L., Ma, T., Xia, Y.: A linear-time algorithm for minimizing the ratio of quadratic functions with a quadratic constraint. Comput. Appl. Math. 40(4), 150 (2021)

    Article  MathSciNet  Google Scholar 

  47. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming—Theory, Algorithms, and Applications. Kluwer Academic Publisher, Dordrecht (2000)

    Book  Google Scholar 

  48. Xu, Y., Sun, W., Qi, L.: On solving a class of linear semi-infinite programming by SDP method. Optimization 64(3), 603–616 (2015)

    MathSciNet  Google Scholar 

  49. Yang, M., Xia, Y.: On Lagrangian duality gap of quadratic fractional programming with a two-sided quadratic constraint. Optim. Lett. 14(3), 569–578 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the comments of two anonymous referees which helped to improve the presentation. The authors would like to thank M. J. Cánovas and M. A. Goberna for helpful comments on the metric regularity of semi-infinite convex inequality system. The authors are supported by the Chinese National Natural Science Foundation under grant 11571350, the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

We first recall some definitions and properties about the so-called needle polynomials required in the proof of Proposition 4.2.

Definition A.1

For \(k\in \mathbb {N}\), the Chebyshev polynomial \(T_k(t)\in {\mathbb R}[t]_k\) is defined by

$$\begin{aligned} T_k(t)=\left\{ \begin{aligned}&\cos (k \arccos t)&\text {for}\ |t|\le 1,\\&\frac{1}{2}(t+\sqrt{t^2-1})^k+\frac{1}{2}(t-\sqrt{t^2-1})^k&\text {for}\ |t|\ge 1. \end{aligned} \right. \end{aligned}$$

Definition A.2

[23] For \(k\in \mathbb {N}\), \(h\in (0, 1)\), the needle polynomial \(v_k^h(t)\in {\mathbb R}[t]_{4k}\) is defined by

$$\begin{aligned} v_k^h(t)=\frac{T_k^2(1+h^2-t^2)}{T_k^2(1+h^2)}. \end{aligned}$$

Theorem A.1

[8, 22, 23] For \(k\in \mathbb {N}\), \(h\in (0, 1)\), the following properties hold for \(v_k^h(t)\):

$$\begin{aligned} \begin{aligned}&v_k^h(0)=1,&\\&0\le v_k^h(t) \le 1&\text {for}\ t\in [-1, 1], \\&v_k^h(t) \le 4e^{-\frac{1}{2}kh}&\text {for}\ t\in [-1, 1]\ \text {with}\ |t|\ge h. \end{aligned} \end{aligned}$$

The following result gives a lower estimator which is used in the proof of Proposition 4.2 to lower bound the integral of the needle polynomial.

Proposition A.1

[44, Lemma 13] Let \(\phi (t)\in {\mathbb R}[t]_k\) be a polynomial of degree up to \(k\in \mathbb {N}\), which is nonnegative over \({\mathbb R}_{\ge 0}\) and satisfies \(\phi (0)=1, \phi (t)\le 1\) for all \(t\in [0,1]\). Let \(\Phi _k : {\mathbb R}_{\ge 0} \rightarrow {\mathbb R}_{\ge 0}\) be defined by

$$\begin{aligned} \Phi _k(t)=\left\{ \begin{aligned}&1-2k^2t&\text {if}\ t\le \frac{1}{2k^2},\\&0&\text {otherwise}. \end{aligned} \right. \end{aligned}$$

Then \(\Phi _k(t) \le p(t)\) for all \(t\in {\mathbb R}_{\ge 0}\).

Proof of Proposition 4.2

For any \(k\in \mathbb {N}\), let \(\rho (k)=\frac{1}{16k^2}\) and \(h(k):=(4n+2)\log k/\lfloor k/2\rfloor \). Then, there exists a \(k'\in \mathbb {N}\) such that \(\rho (k)\le h(k)<\min \{\epsilon _{\textbf{Y}}, 1\}\) for any \(k\ge k'\). Fix a \(k\ge k'\), a linear functional \(\mathscr {L}_k\in ({\mathbb R}[x]_{2\textbf{d}})^*\) satisfying the conditions in (9), and a minimizer \(y^{\star }\) of \(\min _{y\in \textbf{Y}} -\mathscr {L}_k(p(x,y))\). Using the needle polynomial \(v_k^h(t)\in {\mathbb R}[t]\), define \(\sigma _k(y):=v_{\lfloor k/2\rfloor }^{h(k)}(\Vert y-y^{\star }\Vert /(2\sqrt{n}))\). Then, the polynomial \(\tilde{\sigma }:=\sigma _k/\int _{\textbf{Y}}\sigma _k\textrm{d}y\in \Sigma _k^2[y]\) and feasible to (15). Hence, by Taylor’s theorem,

$$\begin{aligned} \begin{aligned} E(\mathscr {L}_k)&\le \frac{1}{\int _{\textbf{Y}}\sigma _k(y)\textrm{d}y}\int _{\textbf{Y}}-\mathscr {L}_k({p(x,y)})\sigma _k(y)\textrm{d}y - p^{\star }_k\\&= \frac{1}{\int _{\textbf{Y}}\sigma _k(y)\textrm{d}y}\int _{\textbf{Y}}\sigma _k(y)(-\mathscr {L}_k({p(x,y)} - p^{\star }_k) \textrm{d}y \\&\le \frac{B_1}{\int _{\textbf{Y}}\sigma _k(y)\textrm{d}y}\int _{\textbf{Y}}\sigma _k(y)\Vert y-y^{\star }\Vert \textrm{d}y \end{aligned} \end{aligned}$$
(25)

Define two sets

$$\begin{aligned} \textbf{Y}_1:=\textbf{B}_{2\sqrt{n}h(k)}^n(y^{\star })\cap \textbf{Y}\quad \text {and}\quad \textbf{Y}_2:=\textbf{B}_{2\sqrt{n}\rho (k)}^n(y^{\star })\cap \textbf{Y}\subseteq \textbf{Y}_1. \end{aligned}$$

Then,

$$\begin{aligned} \int _{\textbf{Y}}\sigma _k(y)\textrm{d}y \ge \int _{\textbf{Y}_1}\sigma _k(y)\textrm{d}y \ge \int _{\textbf{Y}_2}\sigma _k(y)\textrm{d}y. \end{aligned}$$
(26)

As \(\textbf{Y}\subseteq \textbf{H}^n\),

$$\begin{aligned} \begin{aligned} \int _{\textbf{Y}}\sigma _k(y)\Vert y-y^{\star }\Vert \textrm{d}y&= \int _{\textbf{Y}_1}\sigma _k(y)\Vert y-y^{\star }\Vert \textrm{d}y + \int _{\textbf{Y}\setminus \textbf{Y}_1}\sigma _k(y)\Vert y-y^{\star }\Vert \textrm{d}y\\&\le 2\sqrt{n}h(k)\int _{\textbf{Y}_1}\sigma _k(y)\textrm{d}y + 2\sqrt{n} \int _{\textbf{Y}\setminus \textbf{Y}_1}\sigma _k(y)\textrm{d}y. \end{aligned} \end{aligned}$$
(27)

By Theorem A.1, we have \(\sigma _k(y)\le 4e^{-\frac{1}{2}h(k)\lfloor k/2\rfloor }\) for any \(y\in \textbf{Y}\setminus \textbf{Y}_1\) and hence

$$\begin{aligned} \int _{\textbf{Y}\setminus \textbf{Y}_1}\sigma _k(y)\textrm{d}y \le 4e^{-\frac{1}{2}h(k)\lfloor k/2\rfloor }\cdot \text { vol}(\textbf{Y}\setminus \textbf{Y}_1)\le 4e^{-\frac{1}{2}h(k)\lfloor k/2\rfloor }\cdot \text { vol}(\textbf{H}^n). \end{aligned}$$

Moreover, by Proposition A.1, we have

$$\begin{aligned} \sigma _k(y)\ge \Phi _{2k}(\Vert y-y^{\star }\Vert /2\sqrt{n})=1-8k^2(\Vert y-y^{\star }\Vert /2\sqrt{n})\ge \frac{1}{2}, \end{aligned}$$

for all \(y\in \textbf{Y}_2\). Therefore, A5 implies that

$$\begin{aligned} \int _{\textbf{Y}_2}\sigma _k(y)\textrm{d}y \ge \frac{1}{2}\text { vol}(\textbf{Y}_2)\ge \frac{1}{2}\eta _{\textbf{Y}} 2^n n^{n/2} \rho (k)^n\text { vol}(\textbf{B}^n) =\frac{\eta _{\textbf{Y}} n^{n/2}\text { vol}(\textbf{B}^n)}{2^{3n+1}k^{2n}}. \end{aligned}$$
(28)

Combining (25)-(28), we obtain

$$\begin{aligned} \begin{aligned} E(\mathscr {L}_k)&\le 2\sqrt{n}B_1\left( h(k) +4e^{-\frac{1}{2}h(k)\lfloor k/2\rfloor } \frac{2^{3n+1}k^{2n}\text { vol}(\textbf{H}^n)}{\eta _{\textbf{Y}} n^{n/2}\text { vol}(\textbf{B}^n)}\right) \\&=2\sqrt{n}B_1(h(k)+Ce^{-\frac{1}{2}h(k)\lfloor k/2\rfloor } k^{2n}) \end{aligned} \end{aligned}$$
(29)

The conclusion follows by substituting \(h(k)=(4n+2)\log k/\lfloor k/2\rfloor \) in (29). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Zhang, M. An SDP method for fractional semi-infinite programming problems with SOS-convex polynomials. Optim Lett 18, 105–133 (2024). https://doi.org/10.1007/s11590-023-01974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-023-01974-1

Keywords

Navigation