Skip to main content

Advertisement

Log in

On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider the semi-infinite system of polynomial inequalities of the form

$$\begin{aligned} {{\mathbf {K}}}:=\{x\in {{\mathbb {R}}}^m\mid p(x,y)\ge 0,\quad \forall y\in S\subseteq {{\mathbb {R}}}^n\}, \end{aligned}$$

where p(xy) is a real polynomial in the variables x and the parameters y, the index set S is a basic semialgebraic set in \({{\mathbb {R}}}^n\), \(-p(x,y)\) is convex in x for every \(y\in S\). We propose a procedure to construct approximate semidefinite representations of \({{\mathbf {K}}}\). There are two indices to index these approximate semidefinite representations. As two indices increase, these semidefinite representation sets expand and contract, respectively, and can approximate \({{\mathbf {K}}}\) as closely as possible under some assumptions. In some special cases, we can fix one of the two indices or both. Then, we consider the optimization problem of minimizing a convex polynomial over \({{\mathbf {K}}}\). We present an SDP relaxation method for this optimization problem by similar strategies used in constructing approximate semidefinite representations of \({{\mathbf {K}}}\). Under certain assumptions, some approximate minimizers of the optimization problem can also be obtained from the SDP relaxations. In some special cases, we show that the SDP relaxation for the optimization problem is exact and all minimizers can be extracted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmadi, A., Parrilo, P.: A complete characterization of the gap between convexity and SOS-convexity. SIAM J. Optim. 23(2), 811–833 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Ahmadi, A.A., Olshevsky, A., Parrilo, P.A., Tsitsiklis, J.N.: NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Program. 137(1), 453–476 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Ahmadi, A.A., Parrilo, P.A.: A convex polynomial that is not SOS-convex. Math. Program. 135(1), 275–292 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Belousov, E.: Introduction to Convex Analysis and Integer Programming. Moscow University Publ, Moscow (1977)

    MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  6. Berg, C., Maserick, P.H.: Exponentially bounded positive definite functions. Ill. J. Math. 28, 162–179 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Belmont (2009)

    MATH  Google Scholar 

  8. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Berlin (1998)

    MATH  Google Scholar 

  9. Borwein, J.M.: Direct theorems in semi-infinite convex programming. Math. Program. 21(1), 301–318 (1981)

    MathSciNet  MATH  Google Scholar 

  10. Curto, R.E., Fialkow, L.A.: Truncated \(K\)-moment problems in several variables. J. Oper. Theory 54(1), 189–226 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Glashoff, K., Gustafson, S.A.: Linear Optimization and Approximation. Springer, Berlin (1983)

    MATH  Google Scholar 

  12. Goberna, M.A., López, M.A.: Recent contributions to linear semi-infinite optimization. 4OR 15(3), 221–264 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Gouveia, J., Parrilo, P., Thomas, R.: Theta bodies for polynomial ideals. SIAM J. Optim. 20(4), 2097–2118 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Guo, F., Wang, C., Zhi, L.: Semidefinite representations of noncompact convex sets. SIAM J. Optim. 25(1), 377–395 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Haviland, E.K.: On the momentum problem for distribution functions in more than one dimension. Am. J. Math. 57(3), 562–568 (1935)

    MathSciNet  MATH  Google Scholar 

  16. Helton, J., Nie, J.: Sufficient and necessary conditions for semidefinite representability of convex hulls and sets. SIAM J. Optim. 20(2), 759–791 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Helton, J., Nie, J.: Semidefinite representation of convex sets. Math. Program. 122(1), 21–64 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35(3), 380–429 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Kriel, T., Schweighofer, M.: On the exactness of Lasserre relaxations for compact convex basic closed semialgebraic sets. SIAM J. Optim. 28(2), 1796–1816 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Lasserre, J.: Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19(4), 1995–2014 (2009a)

    MathSciNet  MATH  Google Scholar 

  21. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Lasserre, J.B.: A semidefinite programming approach to the generalized problem of moments. Math. Program. 112(1), 65–92 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Lasserre, J.B.: Convex sets with semidefinite representation. Math. Program. Ser. A 120(2), 457–477 (2009b)

    MathSciNet  MATH  Google Scholar 

  24. Lasserre, J.B.: An algorithm for semi-infinite polynomial optimization. TOP 20(1), 119–129 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Lasserre, J.B.: Tractable approximations of sets defined with quantifiers. Math. Program. 151(2), 507–527 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Lasserre, J.B., Netzer, T.: Sos approximations of nonnegative polynomials via simple high degree perturbations. Mathematische Zeitschrift 256(1), 99–112 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, pp. 157–270. Springer, New York (2009)

    Google Scholar 

  28. Levin, V .L.: Application of E. Helly’s theorem to convex programming, problems of best approximation and related questions. Math. USSR-Sbornik 8(2), 235 (1969)

    Google Scholar 

  29. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), pp. 284–289 (2004)

  30. López, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180(2), 491–518 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Magron, V., Henrion, D., Lasserre, J.: Semidefinite approximations of projections and polynomial images of semialgebraic sets. SIAM J. Optim. 25(4), 2143–2164 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Nie, J.: Discriminants and nonnegative polynomials. J. Symbol. Comput. 47(2), 167–191 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Nie, J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. Ser. A 137(1–2), 225–255 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Nie, J.: Optimality conditions and finite convergence of lasserre’s hierarchy. Math. Program. Ser. A 146(1–2), 97–121 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Nie, J., Ranestad, K.: Algebraic degree of polynomial optimization. SIAM J. Optim. 20(1), 485–502 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Nie, J., Schweighofer, M.: On the complexity of Putinar’s positivstellensatz. J. Complex. 23(1), 135–150 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Glob. Optim. 1(1), 15–22 (1991)

    MathSciNet  MATH  Google Scholar 

  38. Parpas, P., Rustem, B.: An algorithm for the global optimization of a class of continuous minimax problems. J. Optim. Theory Appl. 141(2), 461–473 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. In: Algorithmic and quantitative real algebraic geometry. Vol. 60 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, pp. 83–99 (2003)

  40. Powers, V., Reznick, B.: Polynomials that are positive on an interval. Trans Am. Math. Soc. 352(10), 4677–4692 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    MathSciNet  MATH  Google Scholar 

  42. Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. In: Contemporary Mathematics. Vol. 253. American Mathematical Society, pp. 251–272 (2000)

  43. Rostalski, P.: Bermeja—software for convex algebraic geometry (2010). http://math.berkeley.edu/~philipp/cagwiki

  44. Scheiderer, C.: Spectrahedral shadows. SIAM J. Appl. Algebra Geom. 2(1), 26–44 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289(1), 203–206 (1991)

    MathSciNet  MATH  Google Scholar 

  46. Wang, L., Guo, F.: Semidefinite relaxations for semi-infinite polynomial programming. Comput. Optim. Appl. 58(1), 133–159 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming—Theory, Algorithms, and Applications. Kluwer Academic Publisher, Dordrecht (2000)

    MATH  Google Scholar 

  48. Xu, Y., Sun, W., Qi, L.: On solving a class of linear semi-infinite programming by SDP method. Optimization 64(3), 603–616 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the comments of two anonymous referees which helped to improve the presentation. The first author was supported by the Chinese National Natural Science Foundation under Grants 11401074 and 11571350. The second author was supported by the Chinese National Natural Science Foundation under Grant 11801064, the Foundation of Liaoning Education Committee under Grant LN2017QN043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Sun, X. On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems. Comput Optim Appl 75, 669–699 (2020). https://doi.org/10.1007/s10589-020-00168-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00168-0

Keywords

Mathematics Subject Classification

Navigation