Skip to main content
Log in

Convergence analysis for Lasserre’s measure-based hierarchy of upper bounds for polynomial optimization

  • Full Length Paper
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider the problem of minimizing a continuous function f over a compact set \({\mathbf {K}}\). We analyze a hierarchy of upper bounds proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), obtained by searching for an optimal probability density function h on \({\mathbf {K}}\) which is a sum of squares of polynomials, so that the expectation \(\int _{{\mathbf {K}}} f(x)h(x)dx\) is minimized. We show that the rate of convergence is no worse than \(O(1/\sqrt{r})\), where 2r is the degree bound on the density function. This analysis applies to the case when f is Lipschitz continuous and \({\mathbf {K}}\) is a full-dimensional compact set satisfying some boundary condition (which is satisfied, e.g., for convex bodies). The rth upper bound in the hierarchy may be computed using semidefinite programming if f is a polynomial of degree d, and if all moments of order up to \(2r+d\) of the Lebesgue measure on \({\mathbf {K}}\) are known, which holds, for example, if \({\mathbf {K}}\) is a simplex, hypercube, or a Euclidean ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (ed.): Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, vol. 55 (1972)

  2. Beckermann, B.: The condition number of real Vandermonde, Krylov and positive definite Hankel matrices. Numerischen Mathematik 85, 553–577 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blumenson, L.E.: A derivation of \(n\)-dimensional spherical coordinates. Am. Mathemath. Mon. 67(1), 63–66 (1960)

    Article  MathSciNet  Google Scholar 

  4. De Klerk, E., Den Hertog, D., Elabwabi, G.: On the complexity of optimization over the standard simplex. Eur. J Oper. Res. 191, 773–785 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Klerk, E., Laurent, M.: Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube. SIAM J. Optim. 20(6), 3104–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Klerk, E., Laurent, M., Parrilo, P.: A PTAS for the minimization of polynomials of fixed degree over the simplex. Theory Comput. Sci 361(2–3), 210–225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Klerk, E., Laurent, M., Sun, Z.: An alternative proof of a PTAS for fixed-degree polynomial optimization over the simplex. Mathmat Progr. 151(2), 433–457 (2015). doi:10.1007/s10107-014-0825-6

  8. De Klerk, E., Laurent, M., Sun, Z.: An error analysis for polynomial optimization over the simplex based on the multivariate hypergeometric distribution. SIAM J. Optim. 25(3), 1498–1514 (2015)

  9. De Loera, J., Rambau, J., Santos, F.: Triangulations: Structures and algorithms, Book manuscript (2008)

  10. Doherty, A.C., Wehner, S.: Convergence of SDP hierarchies for polynomial optimization on the hypersphere. arXiv:1210.5048v2 (2013)

  11. Dyer, M.E., Frieze, A.M.: On the Complexity of Computing the Volume of a Polyhedron. SIAM J. Comput. 17(5), 967–974 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Faybusovich, L.: Global optimization of homogeneous polynomials on the simplex and on the sphere. In: Floudas, C., Pardalos, P. (eds.) Frontiers in Global Optimization. Kluwer Academic Publishers, Berlin (2003)

    Google Scholar 

  13. Grundmann, A., Moeller, H.M.: Invariant integration formulas for the n-simplex by combinatorial methods. SIAM J. Numer. Anal. 15, 282–290 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henrion, D., Lasserre, J.B., Loefberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Method Softw. 24(4–5), 761–779 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lasserre, J.B., Zeron, E.S.: Solving a class of multivariate integration problems via Laplace techniques. Applicationes Mathematicae 28(4), 391–405 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Book  Google Scholar 

  18. Lasserre, J.B.: A new look at nonnegativity on closed sets and polynomial optimization. SIAM J. Optim. 21(3), 864–885 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lasserre, J.B.: Unit balls of constant volume: which one has optimal representation? Preprint at arXiv:1408.1324 (2014)

  20. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, vol. 149 of IMA Volumes in Mathematics and its Applications, pp. 157–270. Springer, Berlin (2009)

    Chapter  Google Scholar 

  21. Law, A.M.: Simulation Modeling and Analysis, 4th edn. Mc Graw-Hill, New York (2007)

    Google Scholar 

  22. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  23. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  24. Nesterov, Y.: Random walk in a simplex and quadratic optimization over convex polytopes. CORE Discussion Paper 2003/71, CORE-UCL, Louvain-La-Neuve (2003)

  25. Nie, J., Schweighofer, M.: On the complexity of Putinar’s Positivstellensatz. J. Complex. 23(1), 135–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nie, J.: Certifying convergence of Lasserre’s hierarchy via flat truncation. Math. Program. 142(1–2), 485–510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schweighofer, M.: On the complexity of Schmüdgen’s Positivstellensatz. J. Complex. 20, 529–543 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun, Z.: A refined error analysis for fixed-degree polynomial optimization over the simplex. J.Oper. Res. Soc. China 2(3), 379–393 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  30. Whittaker, E.T., Watson, G.W.: A course of modern analysis (4ed). Cambridge University Press, New York (1996)

    Book  Google Scholar 

Download references

Acknowledgments

We thank Jean Bernard Lasserre for bringing our attention to his work [18] and for several valuable suggestions, and Dorota Kurowicka for valuable discussions on multivariate sampling techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Klerk, E., Laurent, M. & Sun, Z. Convergence analysis for Lasserre’s measure-based hierarchy of upper bounds for polynomial optimization. Math. Program. 162, 363–392 (2017). https://doi.org/10.1007/s10107-016-1043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1043-1

Keywords

Mathematics Subject Classification

Navigation