Skip to main content
Log in

Comparative investigations on polymer gel electrolytes comprising triflate salts of Li, Na, Mg in TEGDME solvent and PVdF-HFP/PVP blend matrix

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This paper reports the comparative studies on polymer gel electrolytes (PGEs) comprising liquid electrolytes of the triflate salts of Li, Na, and Mg in tetraethylene glycol dimethyl ether (TEGDME) solvent and poly(vinylidene fluoride-hexafluoropropylene) and poly(vinylpyrroliddone), i.e., PVdF(HFP)/PVP polymer blend matrix. The effect of different cations is investigated using various structural, thermal, and electrochemical techniques. The ionic conductivity and the ion-transport behavior are investigated using electrochemical impedance spectroscopy (EIS) over wide range of frequency. The XRD studies indicate the prominent structural variation after the immobilization of Li, Na, and Mg triflate salts in the PVdF(HFP)/PVP/TEGDME matrix. The Li+ ion conducting PGE composition displays the maximum room temperature ionic conductivity of ~ 6.5 × 10−3 S cm−1. Further, it exhibits a high dielectric constant value and superior ion-dynamics as compared to Na+ and Mg2+ based electrolytes. The PGEs display translational ion-dynamics and conductivity relaxation clubbed with polarizing effects and long-range mobility/migration of the cations (Na+, Mg2+, Li+). The morphological and structural studies reveal that Li+ ion conducting PGE offers a porous structure with smooth surface facilitating faster ionic motion. The PGEs possess considerable electrochemical stability window (≥ 4.0 V) and thermal stability, which prove them worthy for developing ion-batteries, super-capacitors and other next-generation electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Lai YY, Li X, Zhu Y (2020) Polymeric active materials for redox flow battery application. ACS Appl Polym Mater 2(2):113–128. https://doi.org/10.1021/acsapm.9b00864

    Article  CAS  Google Scholar 

  2. Patel M, Mishra K, Banerjee R, Chaudhari J, Kanchan DK, Kumar D (2023) Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. J Energy Chem 81:221–259. https://doi.org/10.1016/j.jechem.2023.02.023

    Article  CAS  Google Scholar 

  3. Syali MS, Kumar D, Mishra K, Kanchan DK (2020) Recent advances in electrolytes for room-temperature sodium-sulfur batteries: A review. Energy Storage Mater 31:352–372. https://doi.org/10.1016/j.ensm.2020.06.023

    Article  Google Scholar 

  4. Review A (2023) D. Kasprzak, C.C.M. -Martinez, and M. Pumera, Sustainable and flexible energy storage devices. Energy Fuels 37(1):74–97. https://doi.org/10.1021/acs.energyfuels.2c03217

    Article  CAS  Google Scholar 

  5. Liang B, Jiang Q, Tang S, Li S, Chen X (2016) Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries. J Power Sources 307:320–328. https://doi.org/10.1016/j.jpowsour.2015.12.127

    Article  CAS  Google Scholar 

  6. Guo J, Hou H, Cheng J, Wang C, Wang Q, Sun H, Chen X (2021) Microporous bayberry-like nano-silica fllers enabling superior performance gel polymer electrolyte for lithium metal batteries. J Mater Sci Mater Electron 32(1):81–93. https://doi.org/10.1007/s10854-020-04645-4

    Article  CAS  Google Scholar 

  7. Poonam K, Sharma A, Arora SK (2019) Tripathi, Review of supercapacitors: Materials and devices. J Energy Storage 21:801–825. https://doi.org/10.1016/j.est.2019.01.010

    Article  Google Scholar 

  8. Ye F, Liao K, Ran R, Shao Z (2020) Recent advances in filler engineering of polymer electrolytes for solid-state li-ion batteries: A review. Energy Fuels 34(8):9189–9207. https://doi.org/10.1021/acs.energyfuels.0c02111

    Article  CAS  Google Scholar 

  9. Dai J, Zhao H, Lin X, Liu S, Fei T, Zhang T (2020) Design strategy for ultrafast-response humidity sensors based on gel polymer electrolytes and application for detecting respiration. Sens Actuators B Chem 304:127270. https://doi.org/10.1016/j.snb.2019.127270

  10. Xin S, Yin YX, Guo YG, Wan LJ (2014) A high-energy room temperature sodium-sulfur battery. Adv Mater 26:1261–1265. https://doi.org/10.1002/adma.201304126

    Article  CAS  PubMed  Google Scholar 

  11. Lee DJ, Park JW, Hasa I, Sun YK, Scrosati B, Hassoun J (2013) Alternative materials for sodium ion-sulphur batteries. J Mater Chem A 1:5256. https://doi.org/10.1039/c3ta10241f

    Article  CAS  Google Scholar 

  12. Pellegrini V, Bodoardo S, Brandell D, Edström K (2019) Challenges and perspectives for new material solutions in batteries. Solid State Commun 303–304:113733. https://doi.org/10.1016/j.ssc.2019.113733

  13. Xia S, Wu X, Zhang Z, Cui Y, Liu W (2019) Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5(4):753–785. https://doi.org/10.1016/j.chempr.2018.11.013

    Article  CAS  Google Scholar 

  14. Ghotbi MY (2019) Solid state electrolytes for electrochemical energy devices. J Mater Sci Mater Electron 30(15):13835–13854. https://doi.org/10.1007/s10854-019-01749-4

    Article  CAS  Google Scholar 

  15. Hou M, Liang F, Chen K, Dai Y, Xue D (2020) Challenges and perspectives of NASICON-type solid electrolytes for all-solidstate lithium batteries. Nanotechnol 31:132003. https://doi.org/10.1088/1361-6528/ab5be7

  16. Wang S, Fang R, Li Y, Liu Y, Xin C, Richter FH, Nan CW (2021) Interfacial challenges for all-solid-state batteries based on sulfde solid electrolytes. J Materiomics 7(2):209–218. https://doi.org/10.1016/j.jmat.2020.09.003

    Article  CAS  Google Scholar 

  17. Song JY, Wang YY, Wan CC (2000) Conductivity study of porous plasticized polymer electrolytes based on poly(vinylidenefuoride) a comparison with polypropylene separators. J Electrochem Soc 147(9):3219. https://doi.org/10.1149/1.1393886

    Article  CAS  Google Scholar 

  18. Alipoori S, Mazinani S, Aboutalebi SH, Sharif F (2020) Review of PVA-based gel polymer electrolytes in fexible solid state supercapacitors: Opportunities and challenges. J Energy Storage 27:101072. https://doi.org/10.1016/j.est.2019.101072

  19. Chauhan AK, Kumar D, Mishra K, Singh A (2021) Performance enhancement of Na+ ion conducting porous gel polymer electrolyte using NaAlO2 active fller. Mater Today Commun 26:101713. https://doi.org/10.1016/j.mtcomm.2020.101713

  20. Shui Z, Chen Y, Zhao W, Chen X (2022) Flexible aluminum-air battery based on ionic liquid-gel polymer electrolyte. Langmuir 38(35):10791–10798. https://doi.org/10.1149/1.1393886

    Article  CAS  PubMed  Google Scholar 

  21. Feuillade G, Perche P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5(1):63–69. https://doi.org/10.1007/BF00625960

    Article  CAS  Google Scholar 

  22. Nagajothi AJ, Kannan R, Rajashabala S (2018) Lithium ion conduction in plasticizer based composite gel polymer electrolytes with the addition of SiO2. Mater Res Innov 22(4):226–230. https://doi.org/10.1080/14328917.2017.1300725

    Article  CAS  Google Scholar 

  23. Li W, Pang Y, Liu J, Liu G, Wang Y, Xia Y (2017) A PEObased gel polymer electrolyte for lithium ion batteries. RSC Adv 7(38):23494–23501. https://doi.org/10.1039/C7RA02603J

    Article  CAS  Google Scholar 

  24. Maheshwaran C, Kanchan DK, Mishra K, Kumar D, Gohel K (2020) Effect of active MgO nano-particles dispersion in small amount within magnesium-ion conducting polymer electrolyte matrix. Nano Struct Nano Objects 24:100587. https://doi.org/10.1016/j.nanoso.2020.100587

  25. Yahata Y, Kimura K, Nakanishi Y, Marukane S, Sato T, Tsujii Y, Ohno K (2019) Control of phase separation in polystyrene/ionic liquid-blended films by polymer brush-grafted particles. Langmuir 35(10):3733–3747. https://doi.org/10.1021/acs.langmuir.8b03891

    Article  CAS  PubMed  Google Scholar 

  26. Chauhan AK, Mishra K, Kumar D, Singh A (2021) Enhancing sodium ion transport in a PEO-based solid polymer electrolyte system with NaAlO2 active fllers. J Electron Mater 50(9):5122–5133. https://doi.org/10.1007/s11664-021-09051-y

    Article  CAS  Google Scholar 

  27. Li T, Xu J, Wang C, Wu W, Su D, Wang G (2019) The latest advances in the critical factors (positive electrode, electrolytes, separators) for sodium-sulfur battery. J Alloys Compd 792:797–817. https://doi.org/10.1016/j.jallcom.2019.03.343

    Article  CAS  Google Scholar 

  28. Liu J, Ahmed S, Khanam Z, Wang T, Song S (2020) Ionic liquid incorporated zn-ion conducting polymer electrolyte membranes. Polymers 12(8):1755. https://doi.org/10.3390/polym12081755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barbosa JC, Dias JP, Méndez SL, Costa CM (2018) Recent advances in poly(vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 8(3):45. https://doi.org/10.3390/membranes8030045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Angulakshmi N, Stephan AM (2015) Effcient electrolytes for lithium-sulfur batteries. Front Energy 3:1. https://doi.org/10.3389/fenrg.2015.00017

    Article  Google Scholar 

  31. Tachikawa N, Yamauchi K, Takashima E, Park JW, Dokko K, Watanable M (2011) Reversibility of electrochemical reaction of sulfur supported on inverse opel carbon in glyme-Li salt molten complex electrolytes. Chem Commun 47:8157. https://doi.org/10.1039/c1cc12415c

    Article  CAS  Google Scholar 

  32. Wang H, Matsui M, Takeda Y, Yamamoto O, Im D, Lee D, Imanishi N (2013) Interface properties between lithium metal and a composite polymer electrolyte of PEO18Li(CF3SO2)2N-tetraethylene glycol dimethyl ether. Membranes 3(4):298–310. https://doi.org/10.3390/membranes3040298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Natarajan A, Stephan AM, Chan CH, Kalarikkal N, Thomas S (2017) Electrochemical studies on composite gel polymer electrolytes for lithium sulfur-batteries. J Appl Polym Sci 134(11):44594. https://doi.org/10.1002/app.44594

    Article  CAS  Google Scholar 

  34. Gamal R, Sheha E, Shash N, El-Shaarawy MG (2015) Efect of tetraethylene glycol dimethyl ether on electrical, structural and thermal properties of PVA-based polymer electrolyte for magnesium battery. Acta Phys Pol A 127(3):803–810. https://doi.org/10.12693/APhysPolA.127.803

    Article  CAS  Google Scholar 

  35. Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540. https://doi.org/10.1007/s11581-016-1908-6

    Article  CAS  Google Scholar 

  36. Tripathi SK, Jain A, Gupta A, Mishra M (2012) Electrical and electrochemical studies on magnesium ion-based polymer gel electrolytes. J Solid State Electrochem 16(5):1799–1806. https://doi.org/10.1007/s10008-012-1656-0

    Article  CAS  Google Scholar 

  37. Chen S, Lan R, Humphreys J, Tao S (2020) Perchlorate based “oversaturated gel electrolyte” for an aqueous rechargeable hybrid Zn-Li battery. ACS Appl Energy Mater 3(3):2526–2536

    Article  CAS  Google Scholar 

  38. Macdonald JR (2005) Impedance spectroscopy: models, data fitting, and analysis. Solid State Ionics 176(2536):1961–2536. https://doi.org/10.1016/j.ssi.2004.05.035

    Article  CAS  Google Scholar 

  39. Sundari GS, Kumar KV, Kumar NK, Reddy PA (2013) Structural and A.C. conductivity studies of (PVdF + NaClO4) solid polymer electrolyte system for an electrochemical cell applications. Asian J Chem 25:S459. https://asianpubs.org/index.php/ajchem/article/view/25_Supplementary%20Issue_128

  40. Castillo J, Santiago A, Judez X, Garbayo I, Clemente JAC, Miñana MCM, Villaverde A, Marcos JAG, Zhang H, Armand M, Li C (2021) Safe, fexible, and high-performing gel-polymer electrolyte for rechargeable lithium metal batteries. Chem Mater 33(22):8812–8821. https://doi.org/10.1021/acs.chemmater.1c02952

    Article  CAS  Google Scholar 

  41. Jin J, Wen Z, Liang X, Cui Y, Wu X (2012) Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery. Solid State Ionics 225:604–607. https://doi.org/10.1016/j.ssi.2012.03.012

    Article  CAS  Google Scholar 

  42. Wang Y-X, Zhang B, Lai W, Xu Y, Chou S-L, Liu H-K, Dou S-X (2017) Room temperature sodium-sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv Energy Mater 7(24):1602829. https://doi.org/10.1002/aenm.201602829

    Article  CAS  Google Scholar 

  43. Song S, Duong HM, Korsunsky AM , Hu N, Lu L (2016) A Na+ Superionic conductor for room-temperature sodium batteries. Sci Rep 6:32330. https://doi.org/10.1038/srep32330

  44. Park C-W, Ahn J-H, Ryu H-S, Kim K-W, Ahn H-J (2006) Room-temperature solid state Sodium∕Sulfur battery. Electrochem Solid State Lett 9(3):A123–A125. https://doi.org/10.1149/1.2164607

    Article  CAS  Google Scholar 

  45. Zhou D, Chen Y, Li B, Fan H, Cheng F, Shanmukaraj D, Rojo T, Armand M, Wang G (2018) A stable quasi-solid-state sodium-sulfur battery. Angew Chem 57(32):10168–10172. https://doi.org/10.1002/anie.201805008

    Article  CAS  Google Scholar 

  46. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: An overview. J Phys D Appl Phys 41:223001. https://doi.org/10.1088/0022-3727/41/22/223001

  47. Xue Z, He D, Xie X (2015) Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3(38):19218–19253. https://doi.org/10.1016/j.matpr.2017.10.043

    Article  CAS  Google Scholar 

  48. Mahato DK (2018) Ac conductivity analysis of nanocrystallite MgFe2O4 ferrite. Mater Today Proc 5(3):9191–9195. https://doi.org/10.1016/j.matpr.2017.10.043

    Article  CAS  Google Scholar 

  49. Aziz SB, Abidin ZHZ (2013) Electrical conduction mechanism in solid polymer electrolytes: new concepts to Arrhenius equation. J Soft Matt 2013:323868. https://doi.org/10.1155/2013/323868

  50. Padmasree KP, Kanchan DK, Kulkarni AR (2006) Impedance and Modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1 ≤x/y ≤ 3. Solid State Ionics 177(5–6):475–482. https://doi.org/10.1016/j.ssi.2005.12.019

    Article  CAS  Google Scholar 

  51. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 167(5613):673–679. https://doi.org/10.1038/267673a0

    Article  Google Scholar 

  52. Woo HJ, Majid SR, Arof AK (2012) Dielectric properties and morphology of polymer electrolyte based on poly (ɛ-caprolactone) and ammonium thiocyanate. Mater Chem Phys 134:755. https://doi.org/10.1016/j.matchemphys.2012.03.064

    Article  CAS  Google Scholar 

  53. Rathika R, Suthanthiraraj SA (2016) Ionic interactions and dielectric relaxation of PEO/PVDF-Mg[(CF3SO2)2N2] blend electrolytes for magnesium ion rechargeable batteries. Macromol Res 24(5):422–428. https://doi.org/10.1007/s13233-016-4053-1

    Article  CAS  Google Scholar 

  54. Al-Gunaid MQA, Saeed AMN (2018) Efects of the electrolyte content on the electrical permittivity, thermal stability, and optical dispersion of poly(vinyl alcohol)–cesium copper oxide–lithium perchlorate nanocomposite solid-polymer electrolytes. J Appl Polym Sci 135(8):45852. https://doi.org/10.1002/app.45852

    Article  CAS  Google Scholar 

  55. Pritam A, Arya AL (2019) Sharma, Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium-ion rechargeable batteries. J Mater Sci 54(9):7131–7155. https://doi.org/10.1007/s10853-019-03381-3

    Article  CAS  Google Scholar 

  56. Singh P, Gupta PN, Saroj AL (2020) Ion dynamics and dielectric relaxation behavior of PVA-PVP-NaI-SiO2 based nano-composites polymer blend electrolytes. Physica B 578:411850. https://doi.org/10.1016/j.physb.2019.411850

  57. Aziz SB, Abidin ZHZ (2015) Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: electrical and dielectric analysis. J Appl Polym Sci 132(15):41774. https://doi.org/10.1002/app.41774

    Article  CAS  Google Scholar 

  58. Nagajothi AJ, Kannan R, Rajashabala S (2018) Lithium ion conduction in plasticizer based composite gel polymer electrolytes with the addition of SiO2. Mater Res Innov 22: 226-230. https://doi.org/10.1080/14328917.2017.1300725

  59. Su NC, Noor SAM, Roslee MF, Mohamed NS, Ahmad A, Yahya MZA (2019) Potential complexes of NaCF3SO3-tetraethylene dimethyl glycol ether (tetraglyme)-based electrolytes for sodium rechargeable battery application. Ionics 25(2):541–549. https://doi.org/10.1007/s11581-018-2718-9

    Article  CAS  Google Scholar 

  60. Mohammadi F, Rabiee A (2011) Solution casting, characterization, and performance evaluation of perfluorosulfonic sodium type membranes for chlor-alkali application. J Appl Poly Sci 120(6):3469–3476. https://doi.org/10.1002/app.33526

    Article  CAS  Google Scholar 

  61. Shafe AH, Khiar ASA (2018) Characterization of chitosan-starch blend based biopolymer electrolyte doped with ammonium nitrate. AIP Conf Pro 1972:030011. https://doi.org/10.1063/1.5041232

  62. Sharma P, Kanchan DK, Gondaliya N, Pant M, Jayswal MS (2013) Conductivity relaxation in Ag+ ion conducting PEOPMMA-PEG polymer blends. Ionics 19(2):301–307. https://doi.org/10.1007/s11581-012-0738-4

    Article  CAS  Google Scholar 

  63. Gondaliya N, Kanchan DK, Sharma P, Joge P (2012) Effects of silicone dioxide and poly(ethylene glycol) on the conductivity and relaxation dynamics of poly(ethylene oxide)-silver trifate solid polymer electrolyte. J Appl Polym Sci 125(2):1513–1520. https://doi.org/10.1002/app.36372

    Article  CAS  Google Scholar 

  64. Chen L, Venkatram S, Kim C, Batra R, Chandrasekaran A, Ramprasad R (2019) Electrochemical stability window of polymeric electrolytes. Chem Mater 31(12):4598–4604. https://doi.org/10.1021/acs.chemmater.9b01553

    Article  CAS  Google Scholar 

  65. Aravindan V, Karthikaselvi G, Vickraman P, Vickraman P, Naganandhini SP (2009) Polyvinylidene fluoride-based novel polymer electrolytes for magnesium-rechargeable batteries with Mg(CF3SO3)2. J Appl Polym Sci 112(5):3024–3029

    Article  CAS  Google Scholar 

  66. Bhatt P, Pathak N, Mishra K, Kanchan DK, Kumar D (2022) Effect of different cations on ion-transport behavior in polymer Gel electrolytes intended for application inflexible electrochemical devices. J Electron Mater 51:1371–1384. https://doi.org/10.1007/s11664-021-09398-2

    Article  CAS  Google Scholar 

  67. Dimri MC, Kumar D, Aziz SB, Mishra K (2021) ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte. Ionics 27(3):1143–1157. https://doi.org/10.1007/s11581-020-03899-6

    Article  CAS  Google Scholar 

  68. Aldalur I, Zhang H, Piszcz M, Oteo U, Rodriguez-Martinez LM, Shanmukaraj D, Rojo T, Armand M (2017) J Power Sources 347:37–46. https://doi.org/10.1016/j.jpowsour.2017.02.047

    Article  CAS  Google Scholar 

  69. Huang HJ, Ding F, Zhong H, Li H, Zhang WG, Liu XJ, Xu Q (2018) J Mater Chem A 6(20):9539–9549. https://doi.org/10.1039/C8TA03061H

    Article  CAS  Google Scholar 

  70. Zhu T, Dong X, Liu Y, Wang Y-G, Wang C, Xia Y-Y (2019) An all-solid-statesodium–sulfur battery using a sulfur/carbonized polyacrylonitrile composite cathod. ACS Appl Energy Mater 2(7):5263–5271. https://doi.org/10.1021/acsaem.9b00953

    Article  CAS  Google Scholar 

  71. Li H, Kuai Y, Yang J, Hirano S, Nuli Y, Wanga J (2022) A new flame-retardant polymer electrolyte with enhanced Li-ion conductivity for safe lithium-sulfur batteries. J Energy Chem 65:616–622. https://doi.org/10.1016/j.jechem.2021.06.036

    Article  CAS  Google Scholar 

  72. Simoes RD, Job AE, Chinaglia DL, Zucolotto V, Camargo-Filho JC, Alves N, Giacometti JA, Oliveira ON, Constantino CJL (2005) Structural characterization of blends containing both PVDF and natural rubber latex. J Raman Spectrosc 36(12):1118–1124. https://doi.org/10.1002/jrs.1416

    Article  CAS  Google Scholar 

  73. Karmakar A, Ghosh A (2011) Charge carrier dynamics and relaxation in (polyethylene oxide-lithium-salt)-based polymer electrolyte containing 1-butyl-1-methylpyrrolidinium bis(trifuoromethylsulfonyl)imide as ionic liquid. Phys Rev E 84:051802. https://doi.org/10.1103/PhysRevE.84.051802

  74. Kumar D, Gohel K, Kanchan DK, Mishra K (2020) Dielectrics and battery studies on flexible nanocomposite gel polymer electrolyte membranes for sodium batteries. J Mater Sci Mater Electron 31(16):13249–13260. https://doi.org/10.1007/s10854-020-03877-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors warmly credit the Electronics and Mechanical Engineering School, Ministry of Defence, Government of India. Authors also thank Dr. Neeladri Das, Department of Chemistry, IIT Patna, India for his support in structural investigations.

Funding

Dr. Deepak Kumar gratefully acknowledges financial support from the Science and Engineering Research Board, Government of India under Core Research Grant (CRG) Scheme vide File No. CRG/2022/008719.

Author information

Authors and Affiliations

Authors

Contributions

Rajkumar Singh: Investigation, writing–original draft; Kuldeep Mishra: Investigation, writing and editing; D.K.  Kanchan: Investigation; Deepak Kumar: Investigation, writing and editing.

Corresponding authors

Correspondence to Kuldeep Mishra or Deepak Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Mishra, K., Kanchan, D.K. et al. Comparative investigations on polymer gel electrolytes comprising triflate salts of Li, Na, Mg in TEGDME solvent and PVdF-HFP/PVP blend matrix. Ionics (2024). https://doi.org/10.1007/s11581-024-05557-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05557-7

Keywords

Navigation