Skip to main content
Log in

Enhancement of the electrochemical properties with the effect of alkali metal systems on PEO/PVdF-HFP complex polymer electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polymer blend electrolytes based on poly(ethylene oxide) (PEO) and poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) were prepared by using different lithium salts LiX (X = ClO4, BF4, CF3SO3, and N [CF3SO2]2) using solution casting technique. To confirm the structure and complexation of the electrolyte films, the prepared electrolytes were subjected to X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. Alternating current (AC) impedance analysis was performed for all the electrolyte samples at various temperatures from 303 to 343 K. The result suggests that among the various lithium salts, LiN[CF3SO2]2-based electrolytes exhibited the highest ionic conductivity at 8.20 × 10−4 S/cm. The linear variation of the ionic conductivity of the polymer electrolytes with increasing temperature suggests the Arrhenius-type thermally activated process. Activation energies were found to decrease when doping with lithium imide salt. The dielectric behavior has been analyzed using dielectric permittivity (ε*), electric modulus (M*), and dissipation factor (tanδ) of the samples. Cyclic voltammetry has been performed for the electrolyte films to study their cyclability and reversibility. Thermogravimetric and differential thermal analysis (TG/DTA) was used to ascertain the thermal stability of the electrolytes, and the porous nature of the electrolytes was identified using scanning electron microscopy via ion hopping conduction. Surface morphology of the sample having maximum conductivity was studied by an atomic force microscope (AFM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nunes-Pereira J et al. (2015) J. Power Sources 281:378

    Article  CAS  Google Scholar 

  2. Angulakshmi N, Manuel Stephan M (2014) Electrochim Acta 127:167

    Article  CAS  Google Scholar 

  3. Gong C et al. (2014) J power sources 246:260

    Article  CAS  Google Scholar 

  4. Starkey SR, French R (1997) Electrochim Acta 42:471

    Article  CAS  Google Scholar 

  5. Rand DAJ (1979) J Power Sources 4:101

    Article  CAS  Google Scholar 

  6. Joykumarsingh I, Bhat SV (2004) J Power Sources 129:280

    Article  Google Scholar 

  7. Johansson P (2001) Polymer 42:4367

    Article  CAS  Google Scholar 

  8. Munshi MZA, Owens BB (1988) Solid State Ionics 26:41

    Article  CAS  Google Scholar 

  9. Gilies JRM et al. (1987) Polymer 28:1977

    Article  Google Scholar 

  10. Malik P et al. (2006) Polym Degrad Stabil 91:634

    Article  CAS  Google Scholar 

  11. Carols M, Costa A, et al. (2013) RSC Adv 3:11404

    Article  Google Scholar 

  12. Xue Z et al. (2015) J Mater Chem A 3:19218

    Article  CAS  Google Scholar 

  13. Pradeepa P et al. (2015) Chinese Chem Lett 26:1191

    Article  CAS  Google Scholar 

  14. Liu Z et al. (2015) Coordin Chem Rev 292:56

    Article  CAS  Google Scholar 

  15. Rajendran S et al. (2004) Solid State Ionics 167:335

    Article  CAS  Google Scholar 

  16. Nowinski JL et al. (1994) J Mater Chem 4(10):1579

    Article  CAS  Google Scholar 

  17. Hodge RM et al. (1996) Polymer 37:1371

    Article  CAS  Google Scholar 

  18. Papke BL et al. (1982) J Electrochem Soc 129:1434

    Article  CAS  Google Scholar 

  19. Kesavan K et al. (2014) Polymer Science Ser B 56:520

    Article  CAS  Google Scholar 

  20. Ulaganathan M et al. (2011) J Mater Chem Phys 129:471

    Article  CAS  Google Scholar 

  21. Stephan AM et al. (1999) J Power Sources 81:752

    Article  Google Scholar 

  22. Pradeepa P, Ramesh Prabhu M (2015) Int J Chem Tech Res 7(4):2077

    Google Scholar 

  23. Jacob MME, Arof AK (2000) Electrochim Acta 45:1701

    Article  CAS  Google Scholar 

  24. Chintapalli S, French R (1998) Electrochim Acta 43:1395

    Article  CAS  Google Scholar 

  25. Roy I et al. (1998) J Phys Chem A 102:3249

    Article  Google Scholar 

  26. Xu K (2004) Chem Rev 104:4303

    Article  CAS  Google Scholar 

  27. Capiglia C et al. (2000) Electrochim Acta 45:1341

    Article  CAS  Google Scholar 

  28. Xu JJ, Ye H (2005) Electrochem Commun 7:829

    Article  CAS  Google Scholar 

  29. Niitani T et al. (2009) J Electrochem Soc 156:A577

    Article  CAS  Google Scholar 

  30. Ali AMM et al. (2007) Mater Lett 61:2026

    Article  CAS  Google Scholar 

  31. Abraham KM, Alamgir M (1993) J Power Sources 43:195

    Article  CAS  Google Scholar 

  32. Quartarone E et al. (1998) Solid State Ionics 110:14

    Article  Google Scholar 

  33. Jiang G et al. (2005) J Power Sources 141:143

    Article  CAS  Google Scholar 

  34. Fan LZ et al. (2007) Adv Funct Mater 17:2800

    Article  CAS  Google Scholar 

  35. Saito Y et al. (2002) J Phys Chem B 106:7200

    Article  CAS  Google Scholar 

  36. Lalia B et al. (2013) J Solid State Electrochem 17:575

    Article  CAS  Google Scholar 

  37. Li M et al. (2011) J Power Sources 196:3355

    Article  Google Scholar 

  38. Fan L et al. (2002) Electrochim Acta 48:205

    Article  CAS  Google Scholar 

  39. Costa CM (2014) J Power Sources 245:779

    Article  CAS  Google Scholar 

  40. Zhu W et al. (2001) J Polym Sci Part B 39:1246

    Article  CAS  Google Scholar 

  41. Immanual Selvaraj I et al. (1995) J Electrochem Soc:142

  42. Stephan AM et al. (2002) Solid State Ionics 148:467

    Article  Google Scholar 

  43. Armstrong RD, Race WP (1976) J Electroanal Chem 74:125

    Article  Google Scholar 

  44. Singh KP, Gupta PN (1998) Eur Polym J 34:1023

    Article  CAS  Google Scholar 

  45. Suzhu YU et al. (2000) J Appl Physics 88:398

    Article  Google Scholar 

  46. Simmons JG et al. (1970) J Appl Physics 41:538

    Article  CAS  Google Scholar 

  47. Ping P et al. (2010) C Chem J Electrochem Soc 11:157

    Google Scholar 

  48. Lu Z et al. (2006) J Power Sources 156:555

    Article  CAS  Google Scholar 

  49. Aurbach D et al. (1991) J Electroanal Chem Interfacial Electrochem 297:225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author P. Pradeepa gratefully acknowledges the UGC-BSR, New Delhi, India, for the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Prabhu Manimuthu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabakaran, P., Manimuthu, R.P. Enhancement of the electrochemical properties with the effect of alkali metal systems on PEO/PVdF-HFP complex polymer electrolytes. Ionics 22, 827–839 (2016). https://doi.org/10.1007/s11581-015-1618-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1618-5

Keywords

Navigation