Skip to main content

Advertisement

Log in

Potential complexes of NaCF3SO3-tetraethylene dimethyl glycol ether (tetraglyme)-based electrolytes for sodium rechargeable battery application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The increasing energy demand on available global lithium resources has created concerns on development of new and advanced sustainable energy sources. Sodium-based batteries have emerged as promising substitutions to Li-based batteries. We describe here sodium trifluoromethanesulfonate (NaCF3SO3) electrolyte system based on tetraethylene glycol dimethyl ether (tetraglyme). The ionic conductivity of the electrolytes showed a maximum value of 1.6 mS cm−1 for 40 mol% of NaCF3SO3 at room temperature and increased up to of 9.5 mS cm−1 at 373 K. The system showed the anodic stability of the electrolytes up to ca. 5.2 V (Na+/Na) and facile deposition of sodium began at relatively low overpotential, around − 0.01 V vs. Na+/Na, which showed a good reversibility of the electrolytes. Preliminary tests of the electrolyte in half sodium-ion cells employing Na3V2(PO4)3 as cathode electrodes were performed and the cells delivered capacity of 74 mAh g−1 at C/10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Di Lecce D, Carbone L, Gancitano V, Hassoun J (2016) Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes. J Power Sources 334:146–153

    Article  CAS  Google Scholar 

  2. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  Google Scholar 

  3. Best A, Bhatt A, Hollenkamp A (2010) Ionic Liquids with the Bis(fluorosulfonyl)imide Anion: Electrochemical Properties and Applications in Battery Technology. J Electrochem Soc 157:A903

    Article  CAS  Google Scholar 

  4. Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. J Electrochem Soc 151:A209

    Article  CAS  Google Scholar 

  5. Wieczorek W, Raducha D, Zalewska A, Stevens JR (1998) Effect of Salt Concentration on the Conductivity of PEO-Based Composite Polymeric Electrolytes. J Phys Chem B 102:8725–8731

    Article  CAS  Google Scholar 

  6. Magistris A, Mustarelli P, Quartarone E, Tomasi C (2000) Solid State Ionics 136:1241

    Article  Google Scholar 

  7. Albinsson I, Mellander B-E, Stevens J (1991) Ionic conductivity in poly(ethylene oxide) modified poly(dimethylsiloxane) complexed with lithium salts. Polymer 32:2712–2715

    Article  CAS  Google Scholar 

  8. Senthilkumar ST, Bae H, Han J, Kim Y (2018) Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery. Angew Chem Int Ed 57:5335–5339

    Article  CAS  Google Scholar 

  9. Ferry A, Doeff MM, De Jonghe LC (1998) Transport Property and Raman Spectroscopic Studies of the Polymer Electrolyte System P(EO)[sub n]-NaTFSI. J Electrochem Soc 145:1586

    Article  CAS  Google Scholar 

  10. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884

    Article  CAS  Google Scholar 

  11. Moreno JS, Armand M, Berman M, Greenbaum S, Scrosati B, Panero S (2014) Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization. J Power Sources 248:695–702

    Article  CAS  Google Scholar 

  12. Boschin A, Johansson P (2015) Characterization of NaX (X: TFSI, FSI) – PEO based solid polymer electrolytes for sodium batteries. Electrochim Acta 175:124–133

    Article  CAS  Google Scholar 

  13. Elia GA, Bernhard R, Hassoun J (2015) A lithium-ion oxygen battery using a polyethylene glyme electrolyte mixed with an ionic liquid. RSC Adv 5:21360–21365

    Article  CAS  Google Scholar 

  14. Marmorstein D, Yu T, Striebel K, McLarnon F, Hou J, Cairns E (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89:219–226

    Article  CAS  Google Scholar 

  15. Mandai T, Yoshida K, Tsuzuki S, Nozawa R, Masu H, Ueno K, Dokko K, Watanabe M (2015) Effect of Ionic Size on Solvate Stability of Glyme-Based Solvate Ionic Liquids. J Phys Chem B 119:1523–1534

    Article  CAS  PubMed  Google Scholar 

  16. Johansson P, Ratner MA, Shriver DF (2001) The Influence of Inert Oxide Fillers on Poly(ethylene oxide) and Amorphous Poly(ethylene oxide) Based Polymer Electrolytes†. J Phys Chem B 105:9016–9021

    Article  CAS  Google Scholar 

  17. Tsuzuki S, Mandai T, Suzuki S, Shinoda W, Nakamura T, Morishita T, Ueno K, Seki S, Umebayashi Y, Dokko K (2017) Effect of the cation on the stability of cation–glyme complexes and their interactions with the [TFSA]−anion. Phys Chem Chem Phys 19:18262–18272

    Article  CAS  PubMed  Google Scholar 

  18. Tuerxun F, Abulizi Y, NuLi Y, Su S, Yang J, Wang J (2015) High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries. J Power Sources 276:255–261

    Article  CAS  Google Scholar 

  19. Terada S, Mandai T, Suzuki S, Tsuzuki S, Watanabe K, Kamei Y, Ueno K, Dokko K, Watanabe M (2016) Thermal and Electrochemical Stability of Tetraglyme–Magnesium Bis(trifluoromethanesulfonyl)amide Complex: Electric Field Effect of Divalent Cation on Solvate Stability. J Phys Chem C 120:1353–1365

    Article  CAS  Google Scholar 

  20. Terada S, Susa H, Tsuzuki S, Mandai T, Ueno K, Umebayashi Y, Dokko K, Watanabe M (2016) Dissociation and Diffusion of Glyme-Sodium Bis(trifluoromethanesulfonyl)amide Complexes in Hydrofluoroether-Based Electrolytes for Sodium Batteries. J Phys Chem C 120:23339–23350

    Article  CAS  Google Scholar 

  21. Aguilera L, Xiong S, Scheers J, Matic A (2015) A structural study of LiTFSI–tetraglyme mixtures: From diluted solutions to solvated ionic liquids. J Mol Liq 210:238–242

    Article  CAS  Google Scholar 

  22. Hyun J-K, Dong H, Rhodes CP, Frech R, Wheeler RA (2001) Molecular Dynamics Simulations and Spectroscopic Studies of Amorphous Tetraglyme (CH3O(CH2CH2O)4CH3) and Tetraglyme:LiCF3SO3Structures. J Phys Chem B 105:3329–3337

    Article  CAS  Google Scholar 

  23. Choquette Y, Brisard G, Parent M, Brouillette D, Perron G, Desnoyers JE, Armand M, Gravel D, Slougui N (1998) Sulfamides and Glymes as Aprotic Solvents for Lithium Batteries. J Electrochem Soc 145:3500

    Article  CAS  Google Scholar 

  24. Zhang Y, Ma L, Zhang L, Peng Z (2016) Identifying a Stable Counter/Reference Electrode for the Study of Aprotic Na–O2Batteries. J Electrochem Soc 163:A1270–A1274

    Article  CAS  Google Scholar 

  25. Marinaro M, Theil S, Jörissen L, Wohlfahrt-Mehrens M (2013) New insights about the stability of lithium bis(trifluoromethane)sulfonimide-tetraglyme as electrolyte for Li–O2 batteries. Electrochim Acta 108:795–800

    Article  CAS  Google Scholar 

  26. Ardel G, Golodnitsky D, Freedman K, Peled E, Appetecchi G, Romagnoli P, Scrosati B (2002) Rechargeable lithium/hybrid-electrolyte/pyrite battery. J Power Sources 110:152–162

    Article  CAS  Google Scholar 

  27. Lee D-J, Park J-W, Hasa I, Sun Y-K, Scrosati B, Hassoun J (2013) Alternative materials for sodium ion–sulphur batteries. J Mater Chem A 1:5256

    Article  CAS  Google Scholar 

  28. Amarasinghe K, Senaviratne V, Bandara L, Dissanayake M (2014) Electrical and FT-IR study of fumed silica based gel electrolytes; (TETRAGLYME)nKI and (ethylene glycol)nKI. Proceedings of th 14th Asian Conference on Solid State Ionics (ACSSI 2014) 512–521

  29. Kumar R, Sharma JP, Sekhon S (2005) FTIR study of ion dissociation in PMMA based gel electrolytes containing ammonium triflate: Role of dielectric constant of solvent. Eur Polym J 41:2718–2725

    Article  CAS  Google Scholar 

  30. Suthanthiraraj SA, Kumar R, Paul BJ (2009) FT-IR spectroscopic investigation of ionic interactions in PPG 4000: AgCF3SO3 polymer electrolyte. Spectrochim Acta A Mol Biomol Spectrosc 71:2012–2015

    Article  CAS  PubMed  Google Scholar 

  31. Noor S, Ahmad A, Talib I, Rahman MYA (2011) Effect of ZnO nanoparticles filler concentration on the properties of PEO-ENR50-LiCF3SO3 solid polymeric electrolyte. Ionics 17:451–456

    Article  CAS  Google Scholar 

  32. Ramesh S, Yuen TF, Shen CJ (2008) Conductivity and FTIR studies on PEO–LiX [X: CF3SO3−, SO42−] polymer electrolytes. Spectrochim Acta A Mol Biomol Spectrosc 69:670–675

    Article  CAS  PubMed  Google Scholar 

  33. Shin J-H, Henderson WA, Passerini S (2003) Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun 5:1016–1020

    Article  CAS  Google Scholar 

  34. Ni'mah YL, Cheng M-Y, Cheng JH, Rick J, Hwang B-J (2015) Solid-state polymer nanocomposite electrolyte of TiO 2 /PEO/NaClO 4 for sodium ion batteries. J Power Sources 278:375–381

    Article  CAS  Google Scholar 

  35. Sapri M, Zairi MN, Ahmad AH, Mahat MM (2017) Thermal analysis of 1-Ethyl-3-Methylimidazolium Trifluoromethanesulfonate Ionic Liquid to PEO-NaCF3SO3 Polymer Electrolyte, Solid State Phenomena. Trans Tech Publ 268:338–342

  36. Karan N, Pradhan D, Thomas R, Natesan B, Katiyar R (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): Ionic conductivity and dielectric relaxation. Solid State Ionics 179:689–696

    Article  CAS  Google Scholar 

  37. Ali A, Subban R, Bahron H, Winie T, Latif F, Yahya M (2008) Grafted natural rubber-based polymer electrolytes: ATR-FTIR and conductivity studies. Ionics 14:491–500

    Article  CAS  Google Scholar 

  38. Lee W-J, Jung H-R, Lee MS, Kim J-H, Yang KS (2003) Preparation and ionic conductivity of sulfonated-SEBS/SiO2/plasticizer composite polymer electrolyte for polymer battery. Solid State Ionics 164:65–72

    Article  CAS  Google Scholar 

  39. Noor S, Ahmad A, Talib I, Rahman MYA (2010) Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics 16:161–170

    Article  CAS  Google Scholar 

  40. Gray F (1997) Royal Society of Chemistry (Great Britain), polymer electrolytes. Royal Society of Chemistry, Cambridge

    Google Scholar 

  41. Yoon H, Zhu H, Hervault A, Armand M, MacFarlane DR, Forsyth M (2014) Physicochemical properties of N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide for sodium metal battery applications. Phys Chem Chem Phys 16:12350–12355

    Article  CAS  PubMed  Google Scholar 

  42. Vélez J, Álvarez L, del Río C, Herradón B, Mann E, Morales E (2017) Imidazolium-based Mono and Dicationic Ionic Liquid Sodium Polymer Gel Electrolytes. Electrochimica Acta 241:517–525

    Article  CAS  Google Scholar 

  43. Noor S, Su N, Khoon L, Mohamed N, Ahmad A, Yahya M, Zhu H, Forsyth M, MacFarlane D (2017) Properties of High Na-Ion Content N-Propyl-N-Methylpyrrolidinium Bis(Fluorosulfonyl)Imide -Ethylene Carbonate Electrolytes. Electrochim Acta 247:983–993

    Article  CAS  Google Scholar 

  44. Noor SAM, Yoon H, Forsyth M, MacFarlane DR (2015) Gelled ionic liquid sodium ion conductors for sodium batteries. Electrochim Acta 169:376–381

    Article  CAS  Google Scholar 

  45. Carbone L, Gobet M, Peng J, Devany M, Scrosati B, Greenbaum S, Hassoun J (2015) Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery. J Power Sources 299:460–464

    Article  CAS  Google Scholar 

  46. Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50

    Article  CAS  Google Scholar 

  47. TianKhoon L, Hassan NH, Rahman MYA, Vedarajan R, Matsumi N, Ahmad A (2015) One-pot synthesis nano-hybrid ZrO2–TiO2 fillers in 49% poly(methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application. Solid State Ionics 276:72–79

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Battery Laboratory in Solar Energy Research Institute, UKM for battery testing facilities.

Funding

This study was financially supported by the Malaysian Ministry of Higher Education via FRGS/1/2015/SG06/UPNM/03/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. M. Noor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, N.C., Noor, S.A.M., Roslee, M.F. et al. Potential complexes of NaCF3SO3-tetraethylene dimethyl glycol ether (tetraglyme)-based electrolytes for sodium rechargeable battery application. Ionics 25, 541–549 (2019). https://doi.org/10.1007/s11581-018-2718-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2718-9

Keywords

Navigation