Skip to main content
Log in

Effect of Different Cations on Ion-Transport Behavior in Polymer Gel Electrolytes Intended for Application in Flexible Electrochemical Devices

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports the effect of different cations (Na, Mg and Li) while keeping perchlorate as the common anion on ion-dynamics behavior within polymer gel electrolytes containing tetraethylene glycol dimethyl ether (TEGDME) solvent and poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the polymer host. FTIR investigations demonstrate significant changes in characteristic bands, while XRD observations indicate prominent structural variation in terms of merger/suppression of phases when NaClO4, Mg(ClO4)2 and LiClO4 salts are immobilized in the PVdF-HFP/TEGDME matrix. The highest room temperature ionic conductivity of 1.2 × 10−3 S cm−1 with high dielectric constant value has been obtained for the Li+ conducting electrolyte composition due to its superior electrochemistry and ion-conduction behavior as compared to its Na+ and Mg2+ counterparts. In the low-frequency region, modulus curves reveal polarizing effects with long-range mobility/migration of Na/Mg/Li ions, while in the high-frequency region, a peak onset relating the translational ion dynamics and conductivity relaxation is observed. The reported polymer gel electrolytes may be employed as electronic materials for developing next-generation flexible electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. S.B. Aziz, T.J. Woo, M.F.Z. Kadir, and H.M. Ahmed, A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Devices 3, 1 (2018).

    Google Scholar 

  2. A.L. Mehaute, G. Crepy, G. Marcellin, T. Hamaide, and A. Guyot, Polymer electrolytes. Polym. Bull. 14, 233 (1985).

    Google Scholar 

  3. M.S. Syali, D. Kumar, K. Mishra, and D.K. Kanchan, Recent advances in electrolytes for room-temperature sodium-sulfur batteries: A review. Energy Storage Mater. 31, 352 (2020).

    Google Scholar 

  4. A.M. Stephan, and K.S. Nahm, Review on composite polymer electrolytes for lithium batteries. Polymer 47, 5952 (2006).

    CAS  Google Scholar 

  5. B. Liang, Q. Jiang, S. Tang, S. Li, and X. Chen, Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries. J. Power Sources 307, 320 (2016).

    CAS  Google Scholar 

  6. J. Guo, H. Hou, J. Cheng, C. Wang, Q. Wang, H. Sun, and X. Chen, Microporous bayberry-like nano-silica fillers enabling superior performance gel polymer electrolyte for lithium metal batteries. J. Mater. Sci. Mater. Electron 32, 81 (2021).

    CAS  Google Scholar 

  7. S. Sakaida, M. Sugiyama, R. Nagayama, K. Tanaka, and M. Konno, Potential of hydrolyzed oxymethylene dimethyl ether for the suppression of fuel crossover in polymer electrolyte fuel cells. Int. J. Hydrogen Energy 46, 10892 (2021).

    CAS  Google Scholar 

  8. S.B. Aziz, M.A. Brza, H.M. Hamsan, M.F.Z. Kadir, and R.T. Abdulwahid, Electrochemical characteristics of solid state double-layer capacitor constructed from proton conducting chitosan-based polymer blend electrolytes. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03278-1.

    Article  Google Scholar 

  9. J. Dai, H. Zhao, X. Lin, S. Liu, T. Fei, and T. Zhang, Design strategy for ultrafast-response humidity sensors based on gel polymer electrolytes and application for detecting respiration. Sens. Actuators B Chem. 304, 127270 (2020).

    CAS  Google Scholar 

  10. S. Xin, Y.X. Yin, Y.G. Guo, and L.J. Wan, A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 26, 1261 (2014).

    CAS  Google Scholar 

  11. D.J. Lee, J.W. Park, I. Hasa, Y.K. Sun, B. Scrosati, and J. Hassoun, Alternative materials for sodium ion-sulphur batteries. J. Mater. Chem. A 1, 5256 (2013).

    CAS  Google Scholar 

  12. V. Pellegrini, S. Bodoardo, D. Brandell, and K. Edström, Challenges and perspectives for new material solutions in batteries. Solid State Commun. 303–304, 113733 (2019).

    Google Scholar 

  13. S. Xia, X. Wu, Z. Zhang, Y. Cui, and W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5, 753 (2019).

    CAS  Google Scholar 

  14. M.Y. Ghotbi, Solid state electrolytes for electrochemical energy devices. J Mater. Sci. Mater Electron 30, 13835 (2019).

    Google Scholar 

  15. M. Hou, F. Liang, K. Chen, Y. Dai, and D. Xue, Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology 31, 132003 (2020).

    CAS  Google Scholar 

  16. S. Wang, R. Fang, Y. Li, Y. Liu, C. Xin, F.H. Richter, and C.W. Nan, Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes. J. Materiomics 7, 209 (2021).

    Google Scholar 

  17. J.Y. Song, Y.Y. Wang, and C.C. Wan, Conductivity study of porous plasticized polymer electrolytes based on poly(vinylidene fluoride) a comparison with polypropylene separators. J. Electrochem. Soc. 147, 3219 (2000).

    CAS  Google Scholar 

  18. S. Alipoori, S. Mazinani, S.H. Aboutalebi, and F. Sharif, Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. J. Energy Storage 27, 101072 (2020).

    Google Scholar 

  19. A.K. Chauhan, D. Kumar, K. Mishra, and A. Singh, Performance enhancement of Na+ ion conducting porous gel polymer electrolyte using NaAlO2 active filler. Mater. Today Commun. 26, 101713 (2021).

    CAS  Google Scholar 

  20. Z. Osman, M.I.M. Ghazali, L. Othman, and K.B.M. Isa, AC ionic conductivity and DC polarization method of lithium ion transport in PMMA-LiBF4 gel polymer electrolytes. Results Phys. 2, 1 (2012).

    CAS  Google Scholar 

  21. G. Feuillade, and P. Perche, Ion-conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Electrochem. 5, 63 (1975).

    CAS  Google Scholar 

  22. A.J. Nagajothi, R. Kannan, and S. Rajashabala, Lithium ion conduction in plasticizer based composite gel polymer electrolytes with the addition of SiO2. Mater. Res. Innov. 22, 226 (2018).

    CAS  Google Scholar 

  23. W. Li, Y. Pang, J. Liu, G. Liu, Y. Wang, and Y. Xia, A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 7, 23494 (2017).

    CAS  Google Scholar 

  24. C. Maheshwaran, D.K. Kanchan, K. Mishra, D. Kumar, and K. Gohel, Effect of active MgO nano-particles dispersion in small amount within magnesium-ion conducting polymer electrolyte matrix. Nano Struct. Nano Objects 24, 100587 (2020).

    CAS  Google Scholar 

  25. G.G. Kumar, and N. Munichandraiah, Poly(methylmethacrylate)-magnesium triflate gel polymer electrolyte for solid state magnesium battery application. Electrochim. Acta 47, 1013 (2002).

    CAS  Google Scholar 

  26. A.K. Chauhan, K. Mishra, D. Kumar, and A. Singh, Enhancing sodium ion transport in a PEO-based solid polymer electrolyte system with NaAlO2 active fillers. J. Electron. Mater. 50, 5122 (2021).

    CAS  Google Scholar 

  27. T. Li, J. Xu, C. Wang, W. Wu, D. Su, and G. Wang, The latest advances in the critical factors (positive electrode, electrolytes, separators) for sodium-sulfur battery. J. Alloys Compd 792, 797 (2019).

    CAS  Google Scholar 

  28. J. Liu, S. Ahmed, Z. Khanam, T. Wang, and S. Song, Ionic liquid-incorporated Zn-ion conducting polymer electrolyte membranes. Polymers 12, 1755 (2020).

    CAS  Google Scholar 

  29. J.C. Barbosa, J.P. Dias, S.L. Méndez, and C.M. Costa, Recent advances in poly(vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 8, 45 (2018).

    Google Scholar 

  30. N. Angulakshmi, and A.M. Stephan, Efficient electrolytes for lithium-sulfur batteries. Front. Energy 3, 1 (2015).

    Google Scholar 

  31. N. Tachikawa, K. Yamauchi, E. Takashima, J.W. Park, K. Dokko, and M. Watanable, Reversibility of electrochemical reaction of sulfur supported on inverse opel carbon in glyme-Li salt molten complex electrolytes. Chem. Commun. 47, 8157 (2011).

    CAS  Google Scholar 

  32. A. Arya, and A.L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23, 497 (2017).

    CAS  Google Scholar 

  33. S.K. Tripathi, A. Jain, A. Gupta, and M. Mishra, Electrical and electrochemical studies on magnesium ion-based polymer gel electrolytes. J. Solid State Electrochem. 16, 1799 (2012).

    CAS  Google Scholar 

  34. S. Chen, R. Lan, J. Humphreys, and S. Tao, Perchlorate based “oversaturated gel electrolyte” for an aqueous rechargeable hybrid Zn-Li battery. ACS Appl. Energy Mater. 3, 2526 (2020).

    CAS  Google Scholar 

  35. M.Z. Kufian, A.K. Arof, and S. Ramesh, PMMA-LiBOB gel polymer electrolytes in lithium-oxygen cell. IOP Conf. Ser. Mater. Sci. Eng. 515, 012010 (2019).

    CAS  Google Scholar 

  36. H. Wang, M. Matsui, Y. Takeda, O. Yamamoto, D. Im, D. Lee, and N. Imanishi, Interface properties between lithium metal and a composite polymer electrolyte of PEO18Li(CF3SO2)2N-tetraethylene glycol dimethyl ether. Membranes 3, 298 (2013).

    CAS  Google Scholar 

  37. A. Natarajan, A.M. Stephan, C.H. Chan, N. Kalarikkal, and S. Thomas, Electrochemical studies on composite gel polymer electrolytes for lithium sulfur-batteries. J. Appl. Polym. Sci 134, 44594 (2017).

    Google Scholar 

  38. R. Gamal, E. Sheha, N. Shash, and M.G. El-Shaarawy, Effect of tetraethylene glycol dimethyl ether on electrical, structural and thermal properties of PVA-based polymer electrolyte for magnesium battery. Acta Phys. Pol. A 127, 803 (2015).

    Google Scholar 

  39. X. Cai, T. Lei, D. Sun, and L. Lin, A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 7, 15382 (2017).

    CAS  Google Scholar 

  40. N. Yadav, K. Mishra, and S.A. Hashmi, Nanozirconia polymer composite porous membrane prepared by sustainable immersion precipitation method for use as electrolyte in flexible supercapacitors. Mater. Today Commun. 25, 101506 (2020).

    CAS  Google Scholar 

  41. M. Kobayashi, K. Tashiro, and H. Tadokoro, Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules 8, 58 (1975).

    Google Scholar 

  42. R.D. Simoes, A.E. Job, D.L. Chinaglia, V. Zucolotto, J.C. Camargo-Filho, N. Alves, J.A. Giacometti, O.N. Oliveira, and C.J.L. Constantino, Structural characterization of blends containing both PVDF and natural rubber latex. J. Raman Spectrosc. 36, 1118 (2005).

    CAS  Google Scholar 

  43. D. Saika, and A. Kumar, Ionic conduction in PVdF-HFP/PVdF-(PC+DEC)-LiClO4 polymer gel electrolytes. Electrochim Acta 49, 2581 (2004).

    Google Scholar 

  44. A.M. Stephan, K.S. Nahm, M.A. Kulandainathan, G. Ravi, and J. Wilson, Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries. Eur. Polym. J. 42, 1728 (2006).

    CAS  Google Scholar 

  45. A.L. Ahmad, U.R. Farooqui, and N.A. Hamid, Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane. Electrochim. Acta 283, 842 (2018).

    CAS  Google Scholar 

  46. J.R. Macdonald, Impedance spectroscopy: Models, data fitting, and analysis. Solid State Ionics 176, 1961 (2005).

    CAS  Google Scholar 

  47. C.H. Chan, and H.W. Kammer, Impedance spectra of polymer electrolytes. Ionics 23, 2327 (2017).

    CAS  Google Scholar 

  48. G.S. Sundari, K.V. Kumar, N.K. Jyothi, and P.A. Reddy, Structural and A.C. conductivity studies of (PVdF + NaClO4) solid polymer electrolyte system for an electrochemical cell applications. Asian J. Chem. 25, S459 (2013).

    CAS  Google Scholar 

  49. S. Ponmani, and M.R. Prabhu, Development and study of solid polymer electrolytes based on PVdF-HFP/PVAc: Mg (ClO4)2 for Mg ion batteries. J. Mater. Sci. Mater. Electron 29, 15086 (2018).

    CAS  Google Scholar 

  50. J. Castillo, A. Santiago, X. Judez, I. Garbayo, J.A.C. Clemente, M.C.M. Miñana, A. Villaverde, J.A.G. Marcos, H. Zhang, M. Armand, and C. Li, Safe, flexible, and high-performing gel-polymer electrolyte for rechargeable lithium metal batteries. Chem. Mater. 33, 8812 (2021).

    CAS  Google Scholar 

  51. R.C. Agrawal, and G.P. Pandey, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys. 41, 223001 (2008).

    Google Scholar 

  52. Z. Xue, D. He, and X. Xie, Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218 (2015).

    CAS  Google Scholar 

  53. D.K. Mahato, Ac conductivity analysis of nanocrystallite MgFe2O4 ferrite. Mater. Today Proc. 5, 9191 (2018).

    CAS  Google Scholar 

  54. S.B. Aziz, and Z.H.Z. Abidin, Electrical conduction mechanism in solid polymer electrolytes: new concepts to Arrhenius equation. J. Soft. Matt. 2013, 323868 (2013).

    Google Scholar 

  55. A.K. Jonscher, The ‘universal’ dielectric response. Nature 167, 673 (1977).

    Google Scholar 

  56. S.K. Chaurasia, A.L. Saroj, V.K. Shalu, A.K. Singh, A.K. Tripathi, Y.L. Gupta, and R.K. Verma, Singh, Studies on structural thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIM-PF6]. AIP Adv. 5, 077178 (2015).

    Google Scholar 

  57. A. Karmakar, and A. Ghosh, Charge carrier dynamics and relaxation in (polyethylene oxide-lithium-salt)-based polymer electrolyte containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide as ionic liquid. Phys. Rev. E 84, 051802 (2011).

    CAS  Google Scholar 

  58. H.J. Woo, S.R. Majid, and A.K. Arof, Dielectric properties and morphology of polymer electrolyte based on poly (ɛ-caprolactone) and ammonium thiocyanate. Mater Chem Phys 134, 755 (2012).

    CAS  Google Scholar 

  59. R. Rathika, and S.A. Suthanthiraraj, Ionic interactions and dielectric relaxation of PEO/PVDF-Mg[(CF3SO2)2N2] blend electrolytes for magnesium ion rechargeable batteries. Macromol. Res. 24, 422 (2016).

    CAS  Google Scholar 

  60. M.Q.A. Al-Gunaid, and A.M.N. Saeed, Effects of the electrolyte content on the electrical permittivity, thermal stability, and optical dispersion of poly(vinyl alcohol)–cesium copper oxide–lithium perchlorate nanocomposite solid-polymer electrolytes. J. Appl. Polym. Sci. 135, 45852 (2018).

    Google Scholar 

  61. A. Pawlicka, F.C. Tavares, D.S. Dörr, C.M. Cholant, F. Ely, M.J.L. Santos, and C.O. Avellaneda, Dielectric behavior and FTIR studies of xanthan gumbased solid polymer electrolytes. Electrochim. Acta 305, 232 (2019).

    CAS  Google Scholar 

  62. K.S. Ngai, S. Ramesh, K. Ramesh, and J.C. Juan, Electrical, dielectric and electrochemical characterization of novel poly (acrylic acid)- based polymer electrolytes complexed with lithium tetrafluoroborate. Chem. Phys. Lett. 692, 19 (2017).

    Google Scholar 

  63. S.B. Aziz, and Z.H.Z. Abidin, Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: electrical and dielectric analysis. J. Appl. Polym. Sci. 132, 41774 (2015).

    Google Scholar 

  64. P. Singh, P.N. Gupta, and A.L. Saroj, Ion dynamics and dielectric relaxation behavior of PVA-PVP-NaI-SiO2 based nano-composites polymer blend electrolytes. Physica B 578, 411850 (2020).

    CAS  Google Scholar 

  65. A.H. Shaffie, and A.S.A. Khiar, Characterization of chitosan-starch blend based biopolymer electrolyte doped with ammonium nitrate. AIP Conf. Pro. 1972, 030011 (2018).

    Google Scholar 

  66. V.S. Kumaran, H.M. Ng, S. Ramesh, K. Ramesh, B. Vengadaesvaran, and A. Numan, The conductivity and dielectric studies of solid polymer electrolytes based on poly (acrylamide-co-acrylic acid) doped with sodium iodide. Ionics 24, 1947 (2018).

    Google Scholar 

  67. P. Sharma, D.K. Kanchan, N. Gondaliya, M. Pant, and M.S. Jayswal, Conductivity relaxation in Ag+ ion conducting PEO-PMMA-PEG polymer blends. Ionics 19, 301 (2013).

    CAS  Google Scholar 

  68. K.P. Padmasree, D.K. Kanchan, and A.R. Kulkarni, Kulkarni, Impedance and Modulus studies of the solid electrolyte system 20CdI2-80[xAg2O-y(0.7V2O5-0.3B2O3)], where 1 ≤ x/y ≥ 3. Solid State Ionics 177, 475 (2006).

    CAS  Google Scholar 

  69. N. Gondaliya, D.K. Kanchan, P. Sharma, and P. Joge, Effects of silicone dioxide and poly(ethylene glycol) on the conductivity and relaxation dynamics of poly(ethylene oxide)-silver triflate solid polymer electrolyte. J. Appl. Polym. Sci 125, 1513 (2012).

    CAS  Google Scholar 

  70. L. Chen, S. Venkatram, C. Kim, R. Batra, A. Chandrasekaran, and R. Ramprasad, Electrochemical stability window of polymeric electrolytes. Chem Mater. 31, 4598 (2019).

    CAS  Google Scholar 

  71. V. Aravindan, G. Karthikaselvi, P. Vickraman, P. Vickraman, and S.P. Naganandhini, Polyvinylidene fluoride-based novel polymer electrolytes for magnesium-rechargeable batteries with Mg(CF3SO3)2. J. Appl. Polym. Sci. 112, 3024 (2009).

    CAS  Google Scholar 

  72. M.C. Dimri, D. Kumar, S.B. Aziz, and K. Mishra, ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte. Ionics 27, 1143 (2021).

    CAS  Google Scholar 

Download references

Acknowledgments

Deepak Kumar thanks and acknowledges the Electronics and Mechanical Engineering School, Corps of Electronics and Mechanical Engineers, Ministry of Defence, Government of India.

Funding

Kuldeep Mishra thanks the financial support received from Science and Engineering Research Board, a statutory body of Department of Science and Technology, Government of India (File No: YSS/2015/001234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

All the authors agree to participate in this research communication.

Consent to participate

The authors have consented to the submission of the manuscript to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, P.J., Pathak, N., Mishra, K. et al. Effect of Different Cations on Ion-Transport Behavior in Polymer Gel Electrolytes Intended for Application in Flexible Electrochemical Devices. J. Electron. Mater. 51, 1371–1384 (2022). https://doi.org/10.1007/s11664-021-09398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09398-2

Keywords

Navigation