Skip to main content
Log in

Influence of Cr and Mg co-doping on electrochemical performance of quaternary cathode materials for lithium-ion battery

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present study, a novel layered cathodic compound, Li1-xNi0.58Co0.12Mn0.19Fe0.07Cr0.04MgxO2, was synthesized using an economically feasible oxalic acid co-precipitation method. The microstructure, morphology, and electrochemical properties of the synthesized compounds were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), charge–discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical test results showed that the sample containing Cr = 0.04 and Mg = 0.02 exhibited the best electrochemical performance with an initial specific capacity of 181.76 mAh·g−1 at 0.1 C, the capacity retention ratios of 88.81% at 200 cycles at 0.5 C. In addition, the 4Cr-2 Mg electrode exhibits superior rate capability with discharge capacities of 182.56, 171.13, 158.51, 133.41, and 121.01 mAh·g−1 at 0.1, 0.2, 0.5, 1, and 2 C, respectively. Replacing Cr can play an essential role in improving maintenance capacity and cycling behavior. Additionally, the diffusibility of lithium-ion batteries (LIBs) was significantly improved as a result of Mg doping, which could be related to the reduction in Li+/Ni2+ cation mixing and its ionic radius.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data and materials included in this study are available on request.

References

  1. Xie H et al (2023) Structures, issues, and optimization strategies of Ni-rich and Co-low cathode materials for lithium-ion battery. Chem Eng J 470:144051. https://doi.org/10.1016/j.cej.2023.144051

    Article  CAS  Google Scholar 

  2. Wu F, Maier J, Yu Y (2023) Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 49(5):1569–1614. https://doi.org/10.1039/C7CS00863E

    Article  Google Scholar 

  3. Park S et al (2020) Understanding the role of trace amount of Fe incorporated in Ni-rich Li[Ni1-x-yCoxMny]O2 cathode material. J Alloy Compd 835:155342. https://doi.org/10.1016/j.jallcom.2020.155342

    Article  CAS  Google Scholar 

  4. Tuccillo M et al (2020) Analysis of the phase stability of LiMO2 layered oxides (M = Co, Mn, Ni). Crystals 10(6):526. https://doi.org/10.3390/cryst10060526

    Article  CAS  Google Scholar 

  5. Lee B et al (2020) Temperature-controlled synthesis of spinel lithium nickel manganese oxide cathode materials for lithium-ion batteries. Ceram Int 46(13):20856. https://doi.org/10.1016/j.ceramint.2020.05.124

    Article  CAS  Google Scholar 

  6. Yang L et al (2021) Olivine LiMnxFe1−xPO4 cathode materials for lithium ion batteries: restricted factors of rate performance. J Mater Chem A 9(25):14214. https://doi.org/10.1039/D1TA01526E

    Article  CAS  Google Scholar 

  7. Li W et al (2021) Rate performance modification of a lithium-rich manganese-based material through surface self-doping and coating strategies. Langmuir 37(10):3223. https://doi.org/10.1021/acs.langmuir.1c00225

    Article  CAS  PubMed  Google Scholar 

  8. Chen Z, Zhang W, Yang Z (2020) A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations. Nanotechnology 31(1):12001. https://doi.org/10.1088/1361-6528/ab4447

    Article  CAS  Google Scholar 

  9. Yalçın A et al (2023) Synthesis of Sn-doped Li-rich NMC as a cathode material for Li-ion batteries. Electrochim Acta 440:141743. https://doi.org/10.1016/j.electacta.2022.141743

    Article  CAS  Google Scholar 

  10. Dang R et al (2017) Lithium ion conductor and electronic conductor co-coating modified layered cathode material LiNi1/3Mn1/3Co1/3O2. Electrochim Acta 247:443. https://doi.org/10.1016/j.electacta.2017.07.041

    Article  CAS  Google Scholar 

  11. An J et al (2017) Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. J Mater Chem A 5(37):19738. https://doi.org/10.1039/C7TA05971J

    Article  CAS  Google Scholar 

  12. Chang L et al (2022) Lithium-ion battery: a comprehensive research progress of high nickel ternary cathode material. Int J Energy Res 46(15):23145. https://doi.org/10.1002/er.8618

    Article  CAS  Google Scholar 

  13. Chen Y et al (2018) Impact of high valence state cation Ti/Ta surface doping on the stabilization of spinel LiNi0.5Mn1.5O4 cathode materials: a systematic density functional theory investigation. Adv Mater Interf 5(12):1800077. https://doi.org/10.1002/admi.201800077

    Article  CAS  Google Scholar 

  14. Song J et al (2018) Enhancement of high temperature cycling stability in high-nickel cathode materials with titanium doping. J Ind Eng Chem 68:124. https://doi.org/10.1016/j.jiec.2018.07.036

    Article  CAS  Google Scholar 

  15. Zhang X et al (2022) Boosting Li-ion storage capability of self-standing Ni-doped LiMn2O4 nanowall arrays as superior cathodes for high-performance flexible aqueous rechargeable Li-ions batteries. Adv Mater Interf 10(4):2202035. https://doi.org/10.1002/admi.202202035

    Article  CAS  Google Scholar 

  16. Zhou L et al (2017) Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance. J Solid State Electrochem 21(12):3467. https://doi.org/10.1007/s10008-017-3688-y

    Article  CAS  Google Scholar 

  17. Hao J et al (2017) Synthesis and electrochemical performance of Sn-doped LiNi0.5Mn1.5O4 cathode material for high-voltage lithium-ion batteries. Sci China Mater 60(4):315. https://doi.org/10.1007/s40843-016-5166-0

    Article  CAS  Google Scholar 

  18. Li C et al (2023) Directly revealing the structure-property correlation in Na+-doped cathode materials. Appl Surf Sci 612:155810. https://doi.org/10.1016/j.apsusc.2022.155810

    Article  CAS  Google Scholar 

  19. Weber D et al (2022) Tracing low amounts of Mg in the doped cathode active material LiNiO2. J Electrochem Soc 169(3):30540. https://doi.org/10.1149/1945-7111/ac5b38

    Article  CAS  Google Scholar 

  20. Hsu S et al (2022) The effect of dual-doping on the electrochemical performance of LiNi0.5Mn1.5O4 and its application in full-cell lithium-ion batteries. Ceram Int 48(10):14778. https://doi.org/10.1016/j.ceramint.2022.02.015

    Article  CAS  Google Scholar 

  21. Zhao N et al (2016) Effect of Ce3+ doping on the properties of LiFePO4 cathode material. J Rare Earths 34(2):174. https://doi.org/10.1016/S1002-0721(16)60011-X

    Article  CAS  Google Scholar 

  22. Wang L et al (2020) Preparation and electrochemical properties of cationic substitution Li2Mn0.98M0.02SiO4 (M = Mg, Ni, Cr) as cathode material for lithium-ion batteries. Ionics 26(8):3769. https://doi.org/10.1007/s11581-020-03570-0

    Article  CAS  Google Scholar 

  23. Yi T et al (2017) Fe-stabilized Li-rich layered Li1.2Mn0.56Ni0.16Co0.08O2 oxide as a high performance cathode for advanced lithium-ion batteries. Mater Today Energy 4:25. https://doi.org/10.1016/j.mtener.2017.03.005

    Article  Google Scholar 

  24. Yang R et al (2012) Effect of complexing agents on the electrochemical performance of LiFePO4/C prepared by sol-gel method. Nanoscale Res Lett 7(1):40. https://doi.org/10.1186/1556-276X-7-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muruganantham R et al (2015) A facile synthesis and characterization of LiFePO4/C using simple binary reactants with oxalic acid by polyol technique and other high temperature methods. J Mater Sci: Mater Electron 26(4):2095. https://doi.org/10.1007/s10854-014-2653-0

    Article  CAS  Google Scholar 

  26. Shen Y et al (2021) Ammonia-low coprecipitation synthesis of lithium layered oxide cathode material for high-performance battery. Chem Eng J 411:128487. https://doi.org/10.1016/j.cej.2021.128487

    Article  CAS  Google Scholar 

  27. Li Z et al (2021) Optimized synthesis condition and mechanism for novel spherical cobalt-free 0.6Li2MnO3·0.4Li[Fe1/3Ni1/3Mn1/3]O2 cathode. J Power Sources 487:229410. https://doi.org/10.1016/j.jpowsour.2020.229410

    Article  CAS  Google Scholar 

  28. Song Y et al (2021) Controllable synthesis of LiNi1/3Co1/3Mn1/3O2 electrode material via a high shear mixer-assisted precipitation process. Chem Eng J 419:129281. https://doi.org/10.1016/j.cej.2021.129281

    Article  CAS  Google Scholar 

  29. Lin R et al (2021) Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials. Nat Commun 12:2350. https://doi.org/10.1038/s41467-021-22635-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Y et al (2021) Elucidating the effect of the dopant ionic radius on the structure and electrochemical performance of Ni-rich layered oxides for lithium-ion batteries. ACS Appl Mater Interf 13(47):56233. https://doi.org/10.1021/acsami.1c17991

    Article  CAS  Google Scholar 

  31. Chu M et al (2021) Enhancing the electrochemical performance and structural stability of Ni-rich layered cathode materials via dual-site doping. ACS Appl Mater Interf 139(17):19950. https://doi.org/10.1021/acsami.1c00755

    Article  CAS  Google Scholar 

  32. Wu F et al (2019) Improving the reversibility of the H2–H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 59:50. https://doi.org/10.1016/j.nanoen.2019.02.027

    Article  CAS  Google Scholar 

  33. Li X et al (2022) Rational design of thermally stable polymorphic layered cathode materials for next generation lithium rechargeable batteries. Mater Today 61:91. https://doi.org/10.1016/j.mattod.2022.09.013

    Article  CAS  Google Scholar 

  34. Ma R et al (2020) Tuning cobalt-free nickel-rich layered LiNi09Mn01O2cathode material for lithium-ion batteries. ChemElectroChem 7(12):2637. https://doi.org/10.1002/celc.202000443

    Article  CAS  Google Scholar 

  35. Fang S et al (2023) Electrochemically engineering a single-crystal nickel-rich layered cathode. Inorg Chem 62(11):4514. https://doi.org/10.1021/acs.inorgchem.2c04284

    Article  CAS  PubMed  Google Scholar 

  36. Akhilash M et al (2023) Thermal stability as well as electrochemical performance of Li-rich and Ni-rich cathode materials-a comparative study. Ionics 29(3):983. https://doi.org/10.1007/s11581-022-04873-0

    Article  CAS  Google Scholar 

  37. Yang Z et al (2017) Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceram Int 43(4):3866. https://doi.org/10.1016/j.ceramint.2016.12.048

    Article  CAS  Google Scholar 

  38. Kim S et al (2021) Li-ion diffusivity and electrochemical performance of Ni-rich cathode material doped with fluoride ions. J Power Sources 506:230219. https://doi.org/10.1016/j.jpowsour.2021.230219

    Article  CAS  Google Scholar 

  39. Aklalouch M et al (2008) Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi0.5Mn1.5O4-based positive electrode. J Power Sources 185(1):501. https://doi.org/10.1016/j.jpowsour.2008.06.074

    Article  CAS  Google Scholar 

  40. Sun H et al (2016) Investigation of Co-incorporated pristine and Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Dalton Trans 45(39):15317. https://doi.org/10.1039/C6DT02058E

    Article  CAS  PubMed  Google Scholar 

  41. Ge W et al (2016) Multifunctional modification of Li[Ni0.5Co0.2Mn0.3]O2 with NH4VO3 as a high performance cathode material for lithium ion batteries. J Alloys Compd 684:594. https://doi.org/10.1016/j.jallcom.2016.05.249

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Plan Foundation of Foshan (1920001001421) and the industry-University-Research cooperation project of Zhuhai (2220004002572).

Author information

Authors and Affiliations

Authors

Contributions

QL (first author): conceptualization, methodology, experiment, formal analysis, and writing—original draft; JH: data curation and formal analysis; HW: validation; MZ: resource; ZT: investigation; JW: visualization; JL (corresponding author): conceptualization, funding acquisition, resources, supervision, and writing—review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jun Li.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., He, J., Wu, H. et al. Influence of Cr and Mg co-doping on electrochemical performance of quaternary cathode materials for lithium-ion battery. Ionics 30, 1935–1946 (2024). https://doi.org/10.1007/s11581-024-05393-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05393-9

Keywords

Navigation