Skip to main content

Advertisement

Log in

Cerium-doped lithium-rich Li1.2Mn0.56Ni0.11Co0.13O2 as cathode with high performance for lithium-ion batteries

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li-rich layered oxide is considered as one of the most prospective cathode materials for the future high-energy density Li-ion batteries (LIBs). However, the severe voltage and capacity degradation hinders its commercialization. To address the issues, Ce-doped Li-rich Li1.2Mn0.56Ni0.11Co0.13O2 (LMNCO) layered cathode was prepared here via a sol–gel method. The Ce-doped (1 wt.%) Li-rich LMNCO cathode exhibits a layered structure with slight of Li+/Ni2+ mixture. The first-cycle specific discharge capacity at a high rate of 5.0 C reaches up to 151.4 mAh·g−1, and still retains 126.6 mAh·g−1 after 200 cycles with a retention rate of 83.6%. It is higher than that of the undoped LMNCO and the Ce-doped (3 wt.%) Li-rich cathodes. The doping of Ce effectively stabilizes the lattice structure of the LMNCO, increases the crystal plane spacing, and generates a unique layered-spinel phase with three-dimensional Li diffusion channel structure and enhanced Li-ion diffusion rate. This provides an efficient approach to improve the performance of the Li-rich layered structure cathode in LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. He W, Guo WB, Wu HL et al (2021) Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries[J]. Adv Mater 33(50):e2005937

    Article  PubMed  CAS  Google Scholar 

  2. Guan PY, Zhou L, Yu ZL et al (2020) Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. J Energy Chem 43:220–235

    Article  Google Scholar 

  3. Fan YM, Zhang WC, Zhao YL et al (2021) Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: layered and disordered-rocksalt structure [J]. Energy Storage Mater 40:51–71

    Article  Google Scholar 

  4. Wu Y, Liu X, Wang L et al (2021) Development of cathode-electrolyte-interphase for safer lithium batteries[J]. Energy Storage Mater 37:77–86

    Article  Google Scholar 

  5. Ming J, Cao Z, Wahyudi W et al (2018) new insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases[J]. Am Chem Soc Energy Lett 3(2):335–340

    Article  CAS  Google Scholar 

  6. Kim S, Cho W, Zhang XB et al (2016) A stable lithium-rich surface structure for lithium-rich layered cathode materials[J]. Nat Commun 7:13598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo K, Roberts MR, Hao R et al (2016) Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nat Chem 8(7):684–691

    Article  CAS  PubMed  Google Scholar 

  8. Nayak PK, Erickson EM, Schipper F et al (2018) Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries[J]. Adv Energy Mater 8(8):1702397

    Article  CAS  Google Scholar 

  9. Gu M, Belharouak I, Zheng JM et al (2013) Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. Am Chem Soc Nano 7(1):760–767

    CAS  Google Scholar 

  10. Yang MC, Hu B, Geng FS et al (2018) Mitigating voltage decay in high-capacity Li1.2Ni0.2Mn0.6O2 cathode material by surface K+ doping[J]. Electrochim Acta 291:278–286

    Article  CAS  Google Scholar 

  11. Xu HJ, Deng SN, Chen GH et al (2014) Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg doping for lithium ion battery cathode material[J]. J Mater Chem A 2(36):15015–15021

    Article  CAS  Google Scholar 

  12. Wan XW, Che W, Zhang DY et al (2021) Improved electrochemical performance of Mn-based Li-rich cathode Li1.4Mn0.61Ni0.18Co0.18Al0.03O2.4 synthesized in oxygen atmosphere [J]. J Alloys Compd 875:159947

    Article  CAS  Google Scholar 

  13. Ma Z, Huang JC, Quan JB et al (2016) Improved electrochemical performances of layered lithium rich oxide 0.6Li[Li1/3Mn2/3]O2·0.4LiMn5/12Ni5/12Co1/6O2 by Zr doping[J]. Royal Soc Chem Adv 6(25):20522–20531

  14. Lee Y, Shin J, Kang H et al (2021) Promoting the reversible oxygen redox reaction of Li-excess layered cathode materials with surface vanadium cation doping[J]. Adv Sci 8(6):2003013

    Article  CAS  Google Scholar 

  15. Song JH, Kapylou A, Choi HS et al (2016) Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping[J]. J Power Sources 313:65–72

    Article  CAS  Google Scholar 

  16. An J, Shi LY, Chen GR et al (2017) Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries[J]. J Mater Chem A 5(37):19738–19744

    Article  CAS  Google Scholar 

  17. Bao YB, Wang J, Qian YX et al (2020) An appropriate amount of new spinel phase induced by control synthesis for the improvement of electrochemical performance of Li-rich layered oxide cathode material[J]. Electrochim Acta 330:135240

    Article  CAS  Google Scholar 

  18. Li F, Wang YY, Gao SL (2017) et al Mitigating the capacity and voltage decay of lithium-rich layered oxide cathodes by fabricating Ni/Mn graded surface[J]. J Mater Chem A 47(5):24758–24766

  19. Song BH, Liu HW, Liu ZW et al (2013) High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries[J]. Sci Rep 3:3094

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pei Y, Xu CY, Xiao YC et al (2017) Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties[J]. Adv Func Mater 27(7):1604349

    Article  CAS  Google Scholar 

  21. Chen GR, An J, Meng YM et al (2019) Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries[J]. Nano Energy 57:157–165

    Article  CAS  Google Scholar 

  22. Deng YP, Fu F, Wu ZG et al (2016) Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries[J]. J Mater Chem A 4(1):257–263

    Article  CAS  Google Scholar 

  23. He WX, Liu JG, Sun W et al (2018) Coprecipitation-gel synthesis and degradation mechanism of octahedral Li1.2Mn0.54Ni0.13Co0.13O2 as high-performance cathode materials for lithium-ion batteries[J]. Am Chem Soc Appl Mater Interfaces 10(27):23018–23028

  24. Zhang SM, Chen J, Tang T et al (2018) A novel strategy to significantly enhance the initial voltage and suppress voltage fading of a Li- and Mn-rich layered oxide cathode material for lithium-ion batteries[J]. J Mater Chem A 6(8):3610–3624

    Article  CAS  Google Scholar 

  25. Shi SJ, Tu JP, Zhang YD et al (2013) Morphology and electrochemical performance of Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials prepared with different metal sources[J]. Electrochim Acta 109:828–834

    Article  CAS  Google Scholar 

  26. Tang T, Zhang HL et al (2016) Synthesis and electrochemical performance of lithium-rich cathode material Li[Li0.2Ni0.15Mn0.55Co0.1-xAlx]O2[J]. Electrochim Acta 191:263–269

    Article  CAS  Google Scholar 

  27. Wang M, Chen L, Liu M et al (2020) Enhanced electrochemical performance of La-doped cathode material[J]. J Alloy Compd 848:156620

    Article  CAS  Google Scholar 

  28. Li AL, Li GH, Lu SG et al (2022) Interface stabilization of 1,1,2,2-tetrafluoroethyl- 2,2,3,3-tetrafluoropropyl ether to high-voltage Li-rich Mn-based layered cathode materials[J]. Rare Met 41(3):822–829

    Article  CAS  Google Scholar 

  29. Li LJ, Xu M, Chen ZY et al (2015) High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical performance[J]. Electrochim Acta 174:446–455

    Article  CAS  Google Scholar 

  30. Ku K, Hong J, Kim H et al (2018) Suppression of voltage decay through manganese deactivation and nickel redox buffering in high-energy layered lithium-rich electrodes [J]. Adv Energy Mater 8:1800606

    Article  CAS  Google Scholar 

  31. Wang M, Han YQ, Chu M et al (2021) Enhanced electrochemical performances of cerium-doped Li-Rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials[J]. J Alloys Compd 861:158000

  32. Wang J, Wang Y, GuoYZ, et al (2014) Electrochemical characterization of AlPO4 coated LiNi1/3Co1/3Mn1/3O2 cathode materials for high temperature lithium battery application[J]. Rare Met 40:78–83

    Article  CAS  Google Scholar 

  33. Shi SJ, Wang T, Cao M et al (2016) Rapidly self-assembly spherical Li1.2Mn0.56Ni0.16Co0.08O2 with improved performances by microwave hydrothermal method as cathode for lithium-ion batteries[J]. Am Chem Soc Appl Mater Interfaces 8(18):11476–114873

  34. Yan WW, Liu YN, Guo SW et al (2016) Effect of defects on decay of voltage and capacity for Li[Li0.15Ni0.2Mn0.6]O2 cathode material[J]. Am Chem Soc Appl Mater Interfaces 8(19):12118–12126

  35. Deng YP, Yin ZW, Wu ZG et al (2017) Layered/spinel heterostructured and hierarchical micro/nanostructured Li-rich cathode materials with enhanced electrochemical properties for Li-ion batteries[J]. Am Chem Soc Appl Mater Interfaces 9(25):21065–21070

    Article  CAS  Google Scholar 

  36. Yu RZ, Zhang XH, Liu T et al (2017) Spinel/layered heterostructured lithium-rich oxide nanowires as cathode material for high-energy lithium-ion batteries[J]. Am Chem Soc Appl Mater Interfaces 9(47):41210–41223

    Article  CAS  Google Scholar 

  37. Li SY, Fu XL, Liang YW et al (2020) Spinel/layered heterostructured Li-rich Mn-based cathode material for high-capacity and high-rate Li-ion batteries[J]. J Mater Sci: Mater Electron 31(7):5376–5384

    CAS  Google Scholar 

  38. Xiao L, Xiao J, Yu XQ et al (2015) Effects of structural defects on the electrochemical activation of Li2MnO3[J]. Nano Energy 16:143–151

    Article  CAS  Google Scholar 

  39. Xue JX, Wang YJ, Sun C et al (2020) Suppressing voltage fading and improving cycling stability of Li-rich Mn-based materials by introducing MgSO4[J]. J Mater Chem A 8(43):22763–22772

    Article  CAS  Google Scholar 

  40. Yang JC, Chen YG, Li YG et al (2021) Encouraging voltage stability upon long cycling of Li-rich Mn-based cathode materials by Ta-Mo dual doping[J]. Am Chem Soc Appl Mater Interfaces 13(22):25981–25992

    Article  CAS  Google Scholar 

  41. Ku L, Cai YX, Ma YT et al (2019) Enhanced electrochemical performances of layered-spinel heterostructured lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials[J]. Chem Eng J 370:499–507

    Article  CAS  Google Scholar 

  42. Zhang CX, Feng YZ, Wei B et al (2020) Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode[J]. Nano Energy 75:104995

    Article  CAS  Google Scholar 

  43. Li SY, Fu XL, Liang YW et al (2020) Enhanced structural stability of boron-doped layered @ spinel @ carbon heterostructured lithium-rich manganese-based cathode materials[J]. Am Chem Soc Sustain Chem Eng 8(25):9311–9324

    CAS  Google Scholar 

  44. Dong SD, Zhou Y, Hai CX et al (2020) Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials[J]. J Power Sources 462:228185

    Article  CAS  Google Scholar 

  45. Li HL, Wei X, Yang PH et al (2018) Uniform Li1.2Ni0.13Co0.13Mn0.54O2 hollow microspheres with improved electrochemical performance by a facile solvothermal method for lithium ion batteries[J]. Electrochim Acta 261:86–95

    Article  CAS  Google Scholar 

  46. Luo SL, Guo HJ, Feng SH et al (2020) Clearing surficial charge-transport obstacles to boost the performance of lithium-rich layered oxides[J]. Chem Eng J 399:125142

    Article  CAS  Google Scholar 

  47. Zhang YZ, Liu ZH, Wang ZW et al (2019) Electrochemical impedance spectroscopy study of lithium-rich material 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 in the first two charge-discharge cycles [J]. Electrochim Acta 310:136–145

    Article  CAS  Google Scholar 

  48. Zou W, Xia FJ, Song JP et al (2019) Probing and suppressing voltage fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery[J]. Electrochim Acta 318:875–882

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanyan Liu or Yongfu Tang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Yan, J., Zhang, P. et al. Cerium-doped lithium-rich Li1.2Mn0.56Ni0.11Co0.13O2 as cathode with high performance for lithium-ion batteries. Ionics 28, 4515–4526 (2022). https://doi.org/10.1007/s11581-022-04709-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04709-x

Keywords

Navigation