Skip to main content

Advertisement

Log in

A novel hafnium boride catalyst for vanadium redox flow battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Vanadium redox flow batteries have the advantages of long life, flexible design, safety, and reliability, so they have broad development prospects in the field of energy storage. Borides are extensively used in electrochemistry due to their excellent electrical conductivity. In this program, HfB2 was used as catalyst for the V3+/V2+ pair. The catalytic effect was verified by electrochemical impedance spectroscopy and cyclic voltammetry. The result shows that the cell using HfB2 as negative catalyst can exhibit excellent rate capability when the current density is 50 ~ 125 mA cm−2. At 125 mA cm−2, the discharge capacity of the modified cell is 68.7 mA h, which is much higher than pristine cell (22.8 mA h). And the energy efficiency of pristine cells is 11.2% lower than that of modified cells. These consequences suggest that HfB2 is a catalyst with promising prospects to enhance electrochemical activity of V3+/V2+ redox reaction in VRFB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang SN, Zhang MS, Wu XW, Wu XS, Zeng FH, Li YT, Duan SY, Fan DH, Yang Y, Wu XM (2019) The excellent electrochemical performances of ZnMn2O4/Mn2O3: the composite cathode material for potential aqueous zinc ion batteries. J Electroanal Chem 832:69–74. https://doi.org/10.1016/j.jelechem.2018.10.051

    Article  CAS  Google Scholar 

  2. He CM, Ma ZL, Wu Q, Cai YZ, Huang YG, Liu K, Fan YJ, Wang HQ, Li QY, Qi JH, Li QK, Wu XW (2020) Promoting the ORR catalysis of Pt-Fe intermetallic catalysts by increasing atomic utilization and electronic regulation. Electrochim Acta 330:135119. https://doi.org/10.1016/j.electacta.2019.135119

    Article  CAS  Google Scholar 

  3. Zhong M, Guan JD, Feng QJ, Wu XW, Xiao ZB, Zhang W, Tong S, Zhou N, Gong DX (2018) Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@Co/N-doped carbon nanosheet for high-performance lithium-sulfur batteries. Carbon 128:86–96. https://doi.org/10.1016/j.carbon.2017.11.084

    Article  CAS  Google Scholar 

  4. Liu ZZX, Qin LP, Lu BG, Wu XW, Liang SQ, Zhou J (2022) Issues and opportunities facing aqueous Mn2+/MnO2− based batteries. Chemsuschem 15:e202200348. https://doi.org/10.1002/cssc.202200348

    Article  CAS  PubMed  Google Scholar 

  5. Li B, Xue J, Han C, Liu N, Ma KX, Zhang RC, Wu XW, Dai L, Wang L, He ZX (2021) A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. J Colloid Interface Sci 599:467–475. https://doi.org/10.1016/j.jcis.2021.04.113

    Article  CAS  PubMed  Google Scholar 

  6. Tang F, Gao JY, Ruan QY, Wu XW, Wu XS, Zhang T, Liu ZX, Xiang YH, He ZQ, Wu XM (2020) Graphene-wrapped MnO/C composites by MOFs-derived as cathode material for aqueous zinc ion batteries. Electrochim Acta 353:136570. https://doi.org/10.1016/j.electacta.2020.136570

    Article  CAS  Google Scholar 

  7. Li FZ, Li JS, Feng QJ, Yan J, Tang YG, Wang HY (2018) Significantly enhanced oxygen reduction activity of Cu/CuNxCy co-decorated ketjenblack catalyst for Al–air batteries. J Energy Chem 27:419–425. https://doi.org/10.1016/j.jechem.2017.12.002

    Article  Google Scholar 

  8. Xie XS, Liang SQ, Gao JW, Guo S, Guo JB, Wang, Xu GY, Wu XW, Chen G, Zhou J (2020) Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ Sci 13:503–510. https://doi.org/10.1039/C9EE03545A

    Article  CAS  Google Scholar 

  9. Xiang YH, Li J, Wu XW, Xiong LZ, Yin ZL (2015) Synthesis and characterization of manganese-rich transition metal carbonate precursor in the presence of ethanol. Adv Powder Technol 26:1712–1718. https://doi.org/10.1016/j.apt.2015.10.012

    Article  CAS  Google Scholar 

  10. Jiang Z, Li YH, Han C, Huang ZQ, Wu XW, He ZX, Meng W, Dai L, Wang L (2020) Raising lithium storage performances of NaTi2(PO4)3 by nitrogen and sulfur dual-doped carbon layer. J Electrochem Soc 167:020550. https://doi.org/10.1149/1945-7111/ab6c5c

    Article  CAS  Google Scholar 

  11. Jiang YQ, Liu ZH, Lv YR, Tang A, Dai L, Wang L, He ZX (2022) Perovskite enables high performance vanadium redox flow battery. Chem Eng J 443:136341. https://doi.org/10.1016/j.cej.2022.136341

    Article  CAS  Google Scholar 

  12. Zhang DY, Li CC, Lin NZ, Xie BS, Chen J (2022) Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage. Int J Miner Metall Mater 29:168–176. https://doi.org/10.1007/s12613-021-2357-4

    Article  CAS  Google Scholar 

  13. Yu LH, Lin F, Xiao WD, Ling Xu, Xi JY (2019) Achieving efficient and inexpensive vanadium flow battery by combining CexZr1−xO2 electrocatalyst and hydrocarbon membrane. Chem Eng J 356:622–631. https://doi.org/10.1016/j.cej.2018.09.069

    Article  CAS  Google Scholar 

  14. Liu YB, Yu LH, Liu L, Xi JY (2021) Tailoring the vanadium/proton ratio of electrolytes to boost efficiency and stability of vanadium flow batteries over a wide temperature range. Applied Energy. 301:https://doi.org/10.1016/j.apenergy.2021.117454

  15. Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40. https://doi.org/10.1016/j.electacta.2012.09.067

    Article  CAS  Google Scholar 

  16. Yan Y, Li B, Guo W, Pang H, Xue HG (2016) Vanadium based materials as electrode materials for high performance supercapacitors. J Power Sources 329:148–169. https://doi.org/10.1016/j.jpowsour.2016.08.039

    Article  CAS  Google Scholar 

  17. Yang CM, Wang HN, Lu SF, Wu CX, Liu YY, Tan QL, Liang DW, Xiang Y (2015) Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries. Electrochim Acta 182:834–840. https://doi.org/10.1016/j.electacta.2015.09.155

    Article  CAS  Google Scholar 

  18. Dai JC, Ding TL, Dong YC, Teng XG (2021) Amphoteric nafion membrane with tunable cationic and anionic ratios for vanadium redox flow battery prepared via atom transfer radical polymerization. Ionics 27:2127–2138. https://doi.org/10.1007/s11581-021-03980-8

    Article  CAS  Google Scholar 

  19. Zhao LJ, Ma Q, Xu Q, Su HN, Zhang WQ (2021) Performance improvement of non-aqueous iron-vanadium flow battery using chromium oxide–modified graphite felt electrode. Ionics 27:4315–4325. https://doi.org/10.1007/s11581-021-04222-7

    Article  CAS  Google Scholar 

  20. Kong P, Zhu L, Li FR, Xu GB (2019) Self-supporting electrode composed of SnSe nanosheets, thermally treated protein, and reduced graphene oxide with enhanced pseudocapacitance for advanced sodium-ion batteries. ChemElectroChem 6:5642–5650. https://doi.org/10.1002/celc.201901517

    Article  CAS  Google Scholar 

  21. Sun PZ, Lu P, Xu JC, Qiang Ma, Zhang WQ, Shah AA, Su H, Yang WW, Xu Q (2021) The influence and control of ultrasonic on the transport and electrochemical properties of redox couple ions in deep eutectic solvent (DES) for redox flow battery application. Electrochim Acta 394:139140. https://doi.org/10.1016/j.electacta.2021.139140

    Article  CAS  Google Scholar 

  22. Cheng R, Xu JC, Wang XY, Ma Q, Su HN, Yang WW, Xu Q (2020) Electrochemical characteristics and transport properties of V(II)/V(III) redox couple in a deep eutectic solvent: Magnetic field effect. Frontiers in Chemistry. 8:https://doi.org/10.3389/fchem.2020.00619

  23. Xiang Y, Daoud WA (2019) Binary NiCoO2-modified graphite felt as an advanced positive electrode for vanadium redox flow batteries. J Mater Chem A 7:5589–5600. https://doi.org/10.1039/c8ta09650c

    Article  CAS  Google Scholar 

  24. Hassan A, Tzedakis T (2019) Enhancement of the electrochemical activity of a commercial graphite felt for vanadium redox flow battery (VRFB), by chemical treatment with acidic solution of K2Cr2O7. Journal of Energy Storage 26:100967. https://doi.org/10.1016/j.est.2019.100967

    Article  Google Scholar 

  25. Yang ZF, Wei YG, Zeng YK, Yuan YP (2021) Effects of in-situ bismuth catalyst electrodeposition on performance of vanadium redox flow batteries. J Power Sources 506:230–238. https://doi.org/10.1016/j.jpowsour.2021.230238

    Article  CAS  Google Scholar 

  26. Li B, Zhang XT, Wang TT, He ZX, Lu BG, Liang SQ, Zhou J (2021) Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Letters 14:6. https://doi.org/10.1007/s40820-021-00764-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mehboob S, Mehmood A, Lee JY, Shin HJ, Hwang J, Abbas S, Ha HY (2017) Excellent electrocatalytic effects of tin through in situ electrodeposition on the performance of all-vanadium redox flow batteries. J Mater Chem A 5:17388–17400. https://doi.org/10.1039/c7ta05657e

    Article  CAS  Google Scholar 

  28. Shen JX, Liu SQ, He Z, Shi L (2015) Influence of antimony ions in negative electrolyte on the electrochemical performance of vanadium redox flow batteries. Electrochim Acta 151:297–305. https://doi.org/10.1016/j.electacta.2014.11.060

    Article  CAS  Google Scholar 

  29. Yang XF, Liu T, Xu C, Zhang HZ, Li XF, Zhang HM (2017) The catalytic effect of bismuth for VO2+/VO2+ and V3+/V2+ redox couples in vanadium flow batteries. J Energy Chem 26:1–7. https://doi.org/10.1016/j.jechem.2016.09.007

    Article  Google Scholar 

  30. Lv YR, Yang CM, Wang HN, Zhang J, Xiang Y, Lu SF (2020) Antimony-doped tin oxide as an efficient electrocatalyst toward the VO2+/VO2+ redox couple of the vanadium redox flow battery. Catal Sci Technol 10:2484–2490. https://doi.org/10.1039/c9cy01793c

    Article  CAS  Google Scholar 

  31. Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y (2018) Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery. Appl Surf Sci 429:187–195. https://doi.org/10.1016/j.apsusc.2017.07.022

    Article  CAS  Google Scholar 

  32. Mehboob S, Ali G, Shin HJ, Hwang J, Abbas S, Chung KY, Ha HY (2018) Enhancing the performance of all-vanadium redox flow batteries by decorating carbon felt electrodes with SnO2 nanoparticles. Appl Energy 229:910–921. https://doi.org/10.1016/j.apenergy.2018.08.047

    Article  CAS  Google Scholar 

  33. Tseng TM, Huang R, Huang C, Liu C, Hsueh KL, Shieu FS (2014) Carbon felt coated with titanium dioxide/carbon black composite as negative electrode for vanadium redox flow battery. J Electrochem Soc 161:A1132–A1138. https://doi.org/10.1149/2.102406jes

    Article  CAS  Google Scholar 

  34. Yao C, Zhang HM, Liu T, Li XF, Liu ZH (2012) Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery. J Power Sources 218:455–461. https://doi.org/10.1016/j.jpowsour.2012.06.072

    Article  CAS  Google Scholar 

  35. Zhou H, Shen Y, Xi J, Qiu X, Chen L (2016) ZrO2-nanoparticle-modified graphite felt: bifunctional effects on vanadium flow batteries. ACS Appl Mater Interfaces 8:15369–15378. https://doi.org/10.1021/acsami.6b03761

    Article  CAS  PubMed  Google Scholar 

  36. Chen Q, Du YY, Li KM, Xiao HF, Wang W, Zhang WM (2017) Graphene enhances the proton selectivity of porous membrane in vanadium flow batteries. Mater Des 113:149–156. https://doi.org/10.1016/j.matdes.2016.10.019

    Article  CAS  Google Scholar 

  37. Park M, Ryu J, Kim Y, Cho J (2014) Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: a highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy Environ Sci 7:3727–3735. https://doi.org/10.1039/C4EE02123A

    Article  CAS  Google Scholar 

  38. Xue J, Jiang YQ, Zhang ZX, Zhang TX, Han C, Liu YG, Chen ZS, Xie ZB, Zhang GL, Dai L, Wang L, He ZX (2021) A novel catalyst of titanium boride toward V3+/V2+ redox reaction for vanadium redox flow battery. J Alloy Compd 875:159915. https://doi.org/10.1016/j.jallcom.2021.159915

    Article  CAS  Google Scholar 

  39. Guo ZL, Zhou J, Sun ZM (2017) New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. Journal of Materials Chemistry A 5:23530–23535. https://doi.org/10.1039/C7TA08665B

    Article  CAS  Google Scholar 

  40. Qi S, Fan Y, Zhao L, Li W, Zhao M (2021) Two-dimensional transition metal borides as highly efficient N2 fixation catalysts. Appl Surf Sci 536:147742. https://doi.org/10.1016/j.apsusc.2020.147742

    Article  CAS  Google Scholar 

  41. Shin EK, Anggia E, Parveen AS, Park JS (2019) Optimization of the protonic ceramic composition in composite electrodes for high-performance protonic ceramic fuel cells. Int J Hydrogen Energy 44:31323–31332. https://doi.org/10.1016/j.ijhydene.2019.09.247

    Article  CAS  Google Scholar 

  42. Huang RJ, Liu SQ, He Z, Zhu WW, Ye GY, Su YK, Deng WW, Wang J (2022) Electron‐deficient sites for improving V2+/V3+ redox kinetics in vanadium redox flow batteries. Advanced Functional Materials. 2111661.https://doi.org/10.1002/adfm.202111661

  43. Dinesh MM, Huang TZ, Feng HY (2019) Electrochemical impacts of sheet-like hafnium phosphide and hafnium disulfide catalysts bonded with reduced graphene oxide sheets for bifunctional oxygen reactions in alkaline electrolytes. RSC Adv 9:2599. https://doi.org/10.1039/C8RA09598A

    Article  Google Scholar 

  44. Duan Y, Li S, Tan Q, Chen Y, Zou K, Dai X, Bayati M, Xu B, Dala L, Liu T (2021) Cobalt nickel boride nanocomposite as high-performance anode catalyst for direct borohydride fuel cell. Int J Hydrogen Energy 46:15471–15481. https://doi.org/10.1016/j.ijhydene.2021.02.064

    Article  CAS  Google Scholar 

  45. Kumar N, Noh W, Daly SR, Girolami GS, Abelson JR (2009) Low temperature chemical vapor deposition of Hafnium nitride−boron nitride nanocomposite films. Chem Mater 21:5601–5606. https://doi.org/10.1021/cm901774v

    Article  CAS  Google Scholar 

  46. Ling W, Deng Q, Ma Q, Wang H, Zhou C, Xu J, Yin Y, Wu X, Zeng X, Guo Y (2018) Hierarchical carbon micro/nanonetwork with superior electrocatalysis for high-rate and endurable vanadium redox flow batteries. Adv Sci(Weinh) 5:1801281. https://doi.org/10.1002/advs.201801281

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (Nos. 51872090, 51772097), Hebei Natural Science Fund for Distinguished Young Scholar (No. E2019209433), Youth Talent Program of Hebei Provincial Education Department (No. BJ2018020), Natural Science Foundation of Hebei Province (No. E2020209151), and Science and Technology Project of Hebei Education Department (SLRC2019028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongguang Liu, Lei Dai or Zhangxing He.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Yang, Y., Ren, Y. et al. A novel hafnium boride catalyst for vanadium redox flow battery. Ionics 28, 4273–4282 (2022). https://doi.org/10.1007/s11581-022-04656-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04656-7

Keywords

Navigation