Skip to main content

Advertisement

Log in

Amphoteric Nafion membrane with tunable cationic and anionic ratios for vanadium redox flow battery prepared via atom transfer radical polymerization

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nafion is currently the most stable ion exchange membrane for vanadium redox flow battery (VRB). In order to decrease the high vanadium permeability of Nafion while still keeping its high ionic conductivity and stability, in this study, solution atom transfer radical polymerization (ATRP) method is used with Nafion as initiator to prepare amphoteric Nafion membrane with tunable cationic and anionic ratios. Polymers of [2-(methacryloyloxy)ethyl] trimethylammonium chloride (METAC) and sodium 4-styrenesulfonate (NaSS) are chosen as cationic and anionic monomers, respectively. FT-IR (Fourier transform infrared) and 1H NMR (nuclear magnetic resonance) tests prove that the METAC and NaSS have been successfully bonded on the Nafion molecules. The solution-casted amphoteric Nafion membrane M-1:1 has shown the highest ion selectivity among all the grafted Nafion membranes. The VRB with M-1:1 membrane has shown the highest average energy efficiency of 83.9% at current density of 40–80 mA cm−2, which is 4.2% higher than that of Nafion 212 (79.7%). One hundred cycles dynamic charge-discharge test proves that the M-1:1 membrane possesses enough stability and good discharge capacity retention ability. On-line self-discharge test further proves that the M-1:1 membrane has lower vanadium ions permeation than that of Nafion 212 membrane. All the results prove that ATRP is an effective method for preparation of novel amphoteric materials for VRB application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) New all-vanadium redox flow cell. J Electrochem Soc 133(5):1057–1058

    Article  CAS  Google Scholar 

  2. Teng X, Yu C, Wu X, Dong Y, Gao P, Hu H, Zhu Y, Dai J (2018) PTFE/SPEEK/PDDA/PSS composite membrane for vanadium redox flow battery application. J Mater Sci 53(7):5204–5215

    Article  CAS  Google Scholar 

  3. Wei X, Liu S, Wang J, He Z, Zhao K, Yang Y, Liu B, Huang R, He Z (2020) Boosting the performance of positive electrolyte for VRFB by employing zwitterion molecule containing sulfonic and pyridine groups as the additive. Ionics 26:3147–3159

    Article  CAS  Google Scholar 

  4. Zheng L, Wang H, Niu R, Zhang Y, Shi H (2018) Sulfonated poly(ether ether ketone)/sulfonated graphene oxide hybrid membrane for vanadium redox flow battery. Electrochim Acta 282:437–447

    Article  CAS  Google Scholar 

  5. Shi Y, Eze C, Xiong B, He W, Zhang H, Lim TM, Ukil A, Zhao J (2019) Recent development of membrane for vanadium redox flow battery applications: a review. Appl Energ 238:202–224

    Article  CAS  Google Scholar 

  6. Ye J, Yuan D, Ding M, Long Y, Long T, Sun L, Jia C (2021) A cost-effective Nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery. J Power Sources 482:229023

    Article  CAS  Google Scholar 

  7. Lu W, Shi D, Zhang H, Li X (2021) Advanced poly(vinyl pyrrolidone) decorated chlorinated polyvinyl chloride membrane with low area resistance for vanadium flow battery. J Membrane Sci 620:118947

    Article  CAS  Google Scholar 

  8. Liu L, Wang C, He Z, Liu H, Hu Q, Naik N, Guo Z (2021) Bi-functional side chain architecture tuned amphoteric ion exchange membranes for high-performance vanadium redox flow batteries. J Membrane Sci 624:119118

    Article  CAS  Google Scholar 

  9. Xing Y, Geng K, Chu X, Wang C, Liu L, Li N (2021) Chemically stable anion exchange membranes based on C2-protected imidazolium cations for vanadium flow battery. J Membrane Sci 618:118696

    Article  CAS  Google Scholar 

  10. Zhang D, Xu Z, Zhang X, Zhao L, Zhao Y, Wang S, Liu W, Che X, Yang J, Liu J, Yan C (2021) Oriented proton-conductive nanochannels boosting a highly conductive proton-exchange membrane for a vanadium redox flow battery. ACS Appl Mater Inter 13(3):4051–4061

    Article  CAS  Google Scholar 

  11. Zhou X, Xue R, Zhong Y, Zhang Y, Jiang F (2020) Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries. J Membrane Sci 595:117614

    Article  CAS  Google Scholar 

  12. Li A, Wang G, Quan Y, Wei X, Li F, Zhang M, Ur RI, Zhang J, Chen J, Wang R (2020) Sulfonated poly(ether ether ketone)/polyimide acid-base hybrid membranes for vanadium redox flow battery applications. Ionics 26(5):2467–2475

    Article  CAS  Google Scholar 

  13. Wang Y, Hao L (2019) Effect of membrane properties on ion crossover in vanadium redox flow batteries. J Electrochem Soc 166(15):A3784–A3795

    Article  CAS  Google Scholar 

  14. Jiang B, Wu L, Yu L, Qiu X, Xi J (2016) A comparative study of Nafion series membranes for vanadium redox flow batteries. J Membrane Sci 510:18–26

    Article  CAS  Google Scholar 

  15. Dai J, Dong Y, Yu C, Liu Y, Teng X (2018) A novel Nafion-g-PSBMA membrane prepared by grafting zwitterionic SBMA onto Nafion via SI-ATRP for vanadium redox flow battery application. J Membrane Sci 554:324–330

    Article  CAS  Google Scholar 

  16. Dai J, Zhang H, Sui Z, Hu H, Gao P, Zhu Y, Dong Y, Teng X (2020) Study on Nafion/Nafion-g-poly (sulfobetaine methacrylate)-blended amphoteric membranes for vanadium redox flow battery. Ionics 26(2):801–811

    Article  CAS  Google Scholar 

  17. Peng K, Lai J, Liu Y (2017) Preparation of poly(styrenesulfonic acid) grafted Nafion with a Nafion-initiated atom transfer radical polymerization for proton exchange membranes. RSC Adv 7(59):37255–37260

    Article  CAS  Google Scholar 

  18. Feng K, Liu L, Tang BB, Li NW, Wu PY (2016) Nafion-initiated ATRP of 1-vinylimidazole for preparation of proton exchange membranes. ACS Appl Mater Inter 8(18):11516–11525

    Article  CAS  Google Scholar 

  19. Peng K, Wang K, Hsu K, Liu Y (2015) Atom transfer radical addition/polymerization of perfluorosulfonic acid polymer with the C–F bonds as reactive sites. ACS Macro Lett 4(2):197–201

    Article  CAS  Google Scholar 

  20. Liu F, Yi B, Xing D, Yu J, Zhang H (2003) Nafion/PTFE composite membranes for fuel cell applications. J Membrane Sci 212(1–2):213–223

    Article  CAS  Google Scholar 

  21. Damay F, Klein LC (2003) Transport properties of Nafion(TM) composite membranes for proton-exchange membranes fuel cells. Solid State Ionics 162-163:261–267

    Article  CAS  Google Scholar 

  22. Chen F, Che X, Ren X, Zhao L, Zhang D, Chen H, Liu J, Yang J (2020) Polybenzimidazole and polyvinylpyrrolidone blend membranes for vanadium flow battery. J Electrochem Soc 167(6):60511

    Article  CAS  Google Scholar 

  23. Teng X, Dai J, Su J, Yin G (2015) Modification of Nafion membrane using fluorocarbon surfactant for all vanadium redox flow battery. J Membrane Sci 476:20–29

    Article  CAS  Google Scholar 

  24. Dai J, Teng X, Song Y, Ren J (2017) Effect of casting solvent and annealing temperature on recast Nafion membranes for vanadium redox flow battery. J Membrane Sci 522:56–67

    Article  CAS  Google Scholar 

  25. Liang Z, Chen W, Liu J, Wang S, Zhou Z, Li W, Sun G, Xin Q (2004) FT-IR study of the microstructure of Nafion® membrane. J Membrane Sci 233(1–2):39–44

    Article  CAS  Google Scholar 

  26. Wang S, Hou Q, Kong F, Fatehi P (2015) Production of cationic xylan–METAC copolymer as a flocculant for textile industry. Carbohyd Polym 124:229–236

    Article  CAS  Google Scholar 

  27. Ilgin P, Gur A (2015) Synthesis and characterization of a new fast swelling poly(EPMA-co-METAC) as superabsorbent polymer for anionic dye absorbent. Iran Polym J 24(2):149–159

    Article  CAS  Google Scholar 

  28. Rohman G, Huot S, Vilas-Boas M, Radu-Bostan G, Castner DG, Migonney V (2015) The grafting of a thin layer of poly(sodium styrene sulfonate) onto poly(ε-caprolactone) surface can enhance fibroblast behavior. Journal of Materials Science: Materials in Medicine 26(7):206

    PubMed  Google Scholar 

  29. Yang JC, Jablonsky MJ, Mays JW (2002) NMR and FT-IR studies of sulfonated styrene-based homopolymers and copolymers. Polymer 43:5125–5132

    Article  CAS  Google Scholar 

  30. Huberty W, Tong X, Balamurugan S, Deville K, Russo PS, Zhang D (2016) Colorful polyelectrolytes: an atom transfer radical polymerization route to fluorescent polystyrene sulfonate. J Fluoresc 26(2):609–615

    Article  CAS  PubMed  Google Scholar 

  31. Fernyhough CM, Young RN, Ryan AJ, Hutchings LR (2006) Synthesis and characterisation of poly(sodium 4-styrenesulfonate) combs. Polymer 47(10):3455–3463

    Article  CAS  Google Scholar 

  32. Yang JC, Mays JW (2002) Synthesis and characterization of neutral/ionic block copolymers of various architectures. Macromolecules 35(9):3433–3438

    Article  CAS  Google Scholar 

  33. Li P, Hu X, Song G, Chu PK, Xu Z (2012) Facile preparation of cationic p(St-BA-METAC) copolymer nanoparticles and the investigation of their interaction with bovine serum albumin. J Appl Polym Sci 125(2):864–869

    Article  CAS  Google Scholar 

  34. Li Z, Zhang Y, Lu D, Liu Z (2015) Uniform mPEG-b-PMETAC enables pH-responsive delivery of insulin. J Appl Polym Sci 132(39):42596

    Article  Google Scholar 

  35. Hu X, Li P, Yeung KWK, Chu PK, Wu S, Xu Z (2011) Preparation, characterization of cationic terbium luminescent copolymer and its interaction with DNA. Colloid Polym Sci 289(13):1459–1468

    Article  CAS  Google Scholar 

  36. Zoppe JO, Dupire AVM, Lachat TGG, Lemal P, Rodriguez-Lorenzo L, Petri-Fink A, Weder C, Klok H (2017) Cellulose nanocrystals with tethered polymer chains: chemically patchy versus uniform decoration. ACS Macro Lett 6(9):892–897

    Article  CAS  Google Scholar 

  37. De Almeida S, Kawano Y (1999) Thermal behavior of Nafion membranes. J Therm Anal Calorim 58(3):569–577

    Article  Google Scholar 

  38. Park HS, Kim YJ, Hong WH, Lee HK (2006) Physical and electrochemical properties of Nafion/polypyrrole composite membrane for DMFC. J Membrane Sci 272(1-2):28–36

    Article  CAS  Google Scholar 

  39. Ma J, Wang S, Peng J, Yuan J, Yu C, Li J, Ju X, Zhai M (2013) Covalently incorporating a cationic charged layer onto Nafion membrane by radiation-induced graft copolymerization to reduce vanadium ion crossover. Eur Polym J 49(7):1832–1840

    Article  CAS  Google Scholar 

  40. Osifo PO, Masala A (2012) The influence of chitosan membrane properties for direct methanol fuel cell applications. J Fuel Cell Sci Tech 9:011003

    Article  CAS  Google Scholar 

  41. Chen D, Kim S, Li L, Yang G, Hickner MA (2012) Stable fluorinated sulfonated poly(arylene ether) membranes for vanadium redox flow batteries. RSC Adv 2(21):8087–8094

    Article  CAS  Google Scholar 

  42. Li Z, Xi J, Zhou H, Liu L, Wu Z, Qiu X, Chen L (2013) Preparation and characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) blend membrane for vanadium redox flow battery application. J Power Sources 237(0):132–140

    Article  CAS  Google Scholar 

  43. Huang L, Zhang L, Xiao S, Yang Y, Chen F, Fan P, Zhao Z, Zhong M, Yang J (2018) Bacteria killing and release of salt-responsive, regenerative, double-layered polyzwitterionic brushes. Chem Eng J 333:1–10

    Article  CAS  Google Scholar 

  44. Ghaemi N, Madaeni SS, Daraei P, Rajabi H, Shojaeimehr T, Rahimpour F, Shirvani B (2015) PES mixed matrix nanofiltration membrane embedded with polymer wrapped MWCNT: fabrication and performance optimization in dye removal by RSM. J Hazard Mater 298:111–121

    Article  CAS  PubMed  Google Scholar 

  45. Zhu J, Guo N, Zhang Y, Yu L, Liu J (2014) Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP. J Membrane Sci 465:91–99

    Article  CAS  Google Scholar 

  46. Gubler L, Vonlanthen D, Schneider A, Oldenburg FJ (2020) Composite membranes containing a porous separator and a polybenzimidazole thin film for vanadium redox flow batteries. J Electrochem Soc 167:100502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial supports of this work by the National Natural Science Foundation of China (Grant No. 21703048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangguo Teng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Ding, T., Dong, Y. et al. Amphoteric Nafion membrane with tunable cationic and anionic ratios for vanadium redox flow battery prepared via atom transfer radical polymerization. Ionics 27, 2127–2138 (2021). https://doi.org/10.1007/s11581-021-03980-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03980-8

Keywords

Navigation