Skip to main content
Log in

Hydrogenated vanadium oxides as an advanced anode material in lithium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Current research on vanadium oxides in lithium ion batteries (LIBs) considers them as cathode materials, whereas they are rarely studied for use as anodes in LIBs because of their low electrical conductivity and rapid capacity fading. In this work, hydrogenated vanadium oxide nanoneedles were prepared and incorporated into freeze-dried graphene foam. The hydrogenated vanadium oxides show greatly improved charge-transfer kinetics, which lead to excellent electrochemical properties. When tested as anode materials (0.005–3.0 V vs. Li/Li+) in LIBs, the sample activated at 600 °C exhibits high specific capacity (∼941 mA·h·g−1 at 100 mA·g−1) and high-rate capability (∼504 mA·h·g−1 at 5 A·g−1), as well as excellent cycling performance (∼285 mA·h·g−1 in the 1,000th cycle at 5 A·g−1). These results demonstrate the promising application of vanadium oxides as anodes in LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, H. S.; Yu, H.; Wu, X. L.; Zhang, Y.; Luo, Z. Z.; Wang, H. W.; Guo, Y. Y.; Madhavi, S.; Yan, Q. Y. Controllable preparation of square nickel chalcogenide (NiS and NiSe2) nanoplates for superior Li/Na ion storage properties. ACS Appl. Mater. Interfaces 2016, 8, 25261–25267.

    Article  Google Scholar 

  2. Tan, L. P.; Lu, Z. Y.; Tan, H. T.; Zhu, J. X.; Rui, X. H.; Yan, Q. Y.; Hng, H. H. Germanium nanowires-based carbon composite as anodes for lithium-ion batteries. J. Power Sources 2012, 206, 253–258.

    Article  Google Scholar 

  3. Yu, M. P.; Li, R.; Wu, M. M.; Shi, G. Q. Graphene materials for lithium–sulfur batteries. Energy Storage Mater. 2015, 1, 51–73.

    Article  Google Scholar 

  4. Liu, D. H.; Lu, H. Y.; Wu, X. L.; Hou, B. H.; Wan, F.; Bao, S. D.; Yan, Q. Y.; Xie, H. M.; Wang, R. S. Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19738–19746.

    Article  Google Scholar 

  5. Rui, X. H.; Lu, Z. Y.; Yu, H.; Yang, D.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Ultrathin V2O5 nanosheet cathodes: Realizing ultrafast reversible lithium storage. Nanoscale 2013, 5, 556–560.

    Article  Google Scholar 

  6. Rui, X. H.; Lu, Z. Y.; Yin, Z. Y.; Sim, D. H.; Xiao, N.; Lim, T. M.; Hng, H. H.; Zhang, H.; Yan, Q. Y. Oriented molecular attachments through sol–gel chemistry for synthesis of ultrathin hydrated vanadium pentoxide nanosheets and their applications. Small 2013, 9, 716–721.

    Article  Google Scholar 

  7. Yu, J. P.; Han, Z. H.; Hu, X. H.; Zhan, H.; Zhou, Y. H.; Liu, X. J. The investigation of Ti-modified LiCoO2 materials for lithium ion battery. J. Power Sources 2014, 262, 136–139.

    Article  Google Scholar 

  8. Lee, M. J.; Lee, S.; Oh, P.; Kim, Y.; Cho, J. High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. Nano Lett. 2014, 14, 993–999.

    Article  Google Scholar 

  9. Nethravathi, C.; Viswanath, B.; Michael, J.; Rajamath, M. Hydrothermal synthesis of a monoclinic VO2 nanotube–graphene hybrid for use as cathode material in lithium ion batteries. Carbon 2012, 50, 4839–4846.

    Article  Google Scholar 

  10. Wu, C. Z.; Xie, Y. Promising vanadium oxide and hydroxide nanostructures: From energy storage to energy saving. Energy Environ. Sci. 2010, 3, 1191–1206.

    Article  Google Scholar 

  11. Liu, Y. Y.; Li, J. G.; Zhang, Q. F.; Zhou, N.; Uchaker, E.; Cao, G. Z. Porous nanostructured V2O5 film electrode with excellent Li-ion intercalation properties. Electrochem. Commun. 2011, 13, 1276–1279.

    Article  Google Scholar 

  12. Wei, M. D.; Sugihara, H.; Honma, I.; Ichihara, M.; Zhou, H. S. A new metastable phase of crystallized V2O4·0.25H2O nanowires: Synthesis and electrochemical measurements. Adv. Mater. 2005, 17, 2964–2969.

    Article  Google Scholar 

  13. Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180.

    Article  Google Scholar 

  14. Liu, J.; Xia, H.; Xue, D. F.; Lu, L. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc. 2009, 131, 12086–12087.

    Article  Google Scholar 

  15. Jiang, H.; Jia, G. Q.; Hu, Y. J.; Cheng, Q. L.; Fu, Y.; Li, C. Z. Ultrafine V2O3 nanowire embedded in carbon hybrids with enhanced lithium storage capability. Ind. Eng. Chem. Res. 2015, 54, 2960–2965.

    Article  Google Scholar 

  16. Niu, C. J.; Meng, J. S.; Han, C. H.; Zhao, K. N.; Yan, M. Y.; Mai, L. Q. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 2014, 14, 2873–2878.

    Article  Google Scholar 

  17. Yang, S. B.; Gong, Y. J.; Liu, Z.; Zhan, L.; Hashim, D. P.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 2013, 13, 1596–1601.

    Article  Google Scholar 

  18. Liu, D. H.; Lu, H. Y.; Wu, X. L.; Wang, J.; Yan, X.; Zhang, J. P.; Geng, H. B.; Zhang, Y.; Yan, Q. Y. A new strategy for developing superior electrode materials for advanced batteries: Using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horiz. 2016, 1, 496–501.

    Article  Google Scholar 

  19. Chen, M. J.; Liao, S. H.; Yang, H. C.; Lee, H. Y.; Liu, Y. J.; Chen, H. H.; Horng, H. E.; Yang, S. Y. Characterizing longitudinal and transverse relaxation rates of ferrofluids in microtesla magnetic fields. J. Appl. Phys. 2011, 110, 123911.

    Article  Google Scholar 

  20. Gutiérrez, M. C.; Ferrer, M. L.; del Monte, F. Ice-templated materials: Sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem. Mater. 2008, 20, 634–648.

    Article  Google Scholar 

  21. Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E. A design protocol for tailoring ice-templated scaffold structure. J. Roy. Soc. Interface 2014, 11, 20130958.

    Article  Google Scholar 

  22. Jiang, L. L.; Fan, Z. J. Design of advanced porous graphene materials: From graphene nanomesh to 3D architectures. Nanoscale 2014, 6, 1922–1945.

    Article  Google Scholar 

  23. Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; De Gryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Related Phenomena 2004, 135, 167–175.

    Article  Google Scholar 

  24. Jiang, L.; Qu, Y.; Ren, Z. Y.; Yu, P.; Zhao, D. D.; Zhou, W.; Wang, L.; Fu, H. G. In situ carbon-coated yolk–shell V2O3 microspheres for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 1595–1601.

    Article  Google Scholar 

  25. Hryha, E.; Rutqvist, E.; Nyborg, L. Stoichiometric vanadium oxides studied by XPS. Surf. Interface Anal. 2012, 44, 1022–1025.

    Article  Google Scholar 

  26. Peng, C.; Xiao, F.; Yang, J.; Li, Z. H.; Lei, G. T.; Xiao, Q. Z.; Ding, Y. H.; Hu, Z. L. Carbon-encapsulated Mn-doped V2O5 nanorods with long span life for high-power rechargeable lithium batteries. Electrochim. Acta 2016, 192, 216–226.

    Article  Google Scholar 

  27. Tan, H. T.; Rui, X. H.; Yu, H.; Liu, W. L.; Xu, C.; Xu, Z. C.; Hng, H. H.; Yan, Q. Y. Aqueous-based chemical route toward ambient preparation of multicomponent core–shell nanotubes. ACS Nano 2014, 8, 4004–4014.

    Article  Google Scholar 

  28. Peng, X.; Zhang, X. M.; Wang, L.; Hu, L. S.; Cheng, S. H. S.; Huang, C.; Gao, B.; Ma, F.; Huo, K. F.; Chu, P. K. Hydrogenated V2O5 nanosheets for superior lithium storage properties. Adv. Funct. Mater. 2016, 26, 784–791.

    Article  Google Scholar 

  29. Dong, Y. C.; Ma, R. G.; Hu, M. J.; Cheng, H.; Lee, J. M.; Li, Y. Y.; Zapien, J. A. Polymer-pyrolysis assisted synthesis of vanadium trioxide and carbon nanocomposites as high performance anode materials for lithium-ion batteries. J. Power Sources 2014, 261, 184–187.

    Article  Google Scholar 

  30. Shi, Y.; Zhang, Z. J.; Wexler, D.; Chou, S. L.; Gao, J.; Abruña, H. D.; Li, H. J.; Liu, H. K.; Wu, Y. P.; Wang, J. Z. Facile synthesis of porous V2O3/C composites as lithium storage material with enhanced capacity and good rate capability. J. Power Sources 2015, 275, 392–398.

    Article  Google Scholar 

  31. Wang, Y.; Zhang, H. J.; Admar, A. S.; Luo, J. Z.; Wong, C. C.; Borgna, A.; Lin, J. Y. Improved cyclability of lithium-ion battery anode using encapsulated V2O3 nanostructures in well-graphitized carbon fiber. RSC Adv. 2012, 2, 5748–5753.

    Article  Google Scholar 

  32. Rui, X. H.; Tan, H. T.; Sim, D.; Liu, W. L.; Xu, C.; Hng, H. H.; Yazami, R.; Lim, T. M.; Yan, Q. Y. Template-free synthesis of urchin-like Co3O4 hollow spheres with good lithium storage properties. J. Power Sources 2013, 222, 97–102.

    Article  Google Scholar 

  33. Sun, W. P.; Rui, X. H.; Yang, D.; Sun, Z. Q.; Li, B.; Zhang, W. Y.; Zong, Y.; Madhavi, S.; Dou, S. X.; Yan, Q. Y. Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano 2015, 9, 11371–11381.

    Article  Google Scholar 

  34. Tang, S. B.; Lai, M. O.; Lu, L. Li-ion diffusion in highly (0 0 3) oriented LiCoO2 thin film cathode prepared by pulsed laser deposition. J. Alloys Compd. 2008, 449, 300–303.

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by National Natural Science Foundation of China (Nos.61525402, 5161101159), Key University Science Research Project of Jiangsu Province (No. 15KJA430006), QingLan Project and the program of China Scholarships Council (No. 201506810014). We gratefully acknowledge Singapore MOE AcRF Tier 1 grants 2016-T1-002-065, RG113/15, Singapore A*STAR Pharos program SERC 1527200022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Huang, Xiaochen Dong or Qingyu Yan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, H., Yang, J. et al. Hydrogenated vanadium oxides as an advanced anode material in lithium ion batteries. Nano Res. 10, 4266–4273 (2017). https://doi.org/10.1007/s12274-017-1582-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1582-7

Keywords

Navigation