Skip to main content
Log in

A novel ceramic/polyurethane composite solid polymer electrolyte for high lithium batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Compared with the organic electrolyte, the solid electrolyte is more stable and non-volatile at high potential, which solves the decomposition problem of organic electrolyte and the potential safety hazard of flammability and explosion. Based on the advantages of inorganic solid electrolyte and polymer solid electrolyte, a ceramic/polyurethane composite polymer electrolyte (CPPE) based on Li0.35La0.55TiO3 (LLTO) and polyurethane (LPU) was prepared in this work. First, a linear polyurethane (LPU) was synthesized via 2,4-toluene diisocyanate (TDI) and poly(propylene oxide) (PPO), owing to the high ionic conductivity of LLTO and good mechanical property of LPU. The CPPE has a satisfactory lithium ion conductivity (3.8 × 10−4 S cm−1) at room temperature. Furthermore, the assembled LiFePO4|CPPE|Li battery exhibit excellent cycle performance at room temperature, the discharge capacity was still 149.8 mAh g−1 after 200 cycles and with a superior capacity retention of 97.8% at 0.5 °C. Additionally, the LiNi0.8Co0.1Mn0.1O2|CPPE|Li exhibited remarkable rate capacity that the initial capacity reached to 216.4 mAh g−1 at 0.1 °C and maintains the excellent specific capacity of 138 mAh g−1 at 1 °C. These findings suggest that CPPE provides a viable idea for the development of high-performance lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang S, Xiong P, Zhang J, Wang G (2020) Recent progress on flexible lithium metal batteries: composite lithium metal anodes and solid-state electrolytes. Energy Storage Mater 29:310–331

    Article  Google Scholar 

  2. Wen L, Chen J, Liang J et al (2017) Flexible batteries ahead. Natl Sci Rev 01:24–27

    Google Scholar 

  3. Lin D, Liu Y, Cui Y et al (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206

    Article  CAS  Google Scholar 

  4. Bruce G, Freunberger A, Hardwick L et al (2011) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29

    Article  Google Scholar 

  5. Tarascon J, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  6. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J. Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  7. Manthiram A, Yu X, Wang S et al (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103–16110

    Article  CAS  Google Scholar 

  8. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  Google Scholar 

  9. Cheng XB, Zhao CZ, Yao YX, Liu H, Zhang Q (2019) Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 5:74–96

    Article  CAS  Google Scholar 

  10. Zhamu A, Chen G, Liu C, Neff D, Fang Q, Yu Z, Xiong W, Wang Y, Wang X, Jang BZ (2012) Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ Sci 5(2):5701–5707

    Article  CAS  Google Scholar 

  11. Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ (2013) Metallic anodes for next generation secondary batteries. Chem Soc Rev 42(23):9011–9034

    Article  CAS  Google Scholar 

  12. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG (2015) Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 6:8058–8071

    Article  CAS  Google Scholar 

  13. Luo W, Zhou L, Fu K et al (2015) A thermally conductive separator for stable Li metal anodes. Nano Lett 15(9):6149–6154

    Article  CAS  Google Scholar 

  14. Chen KH, Wood KN, Kazyak E et al (2017) Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J Mater Chem A 5:11671–11681

    Article  CAS  Google Scholar 

  15. Wang Z, Liu J, Wang M, Shen X, Qian T, Yan C (2020) Toward safer solid-state lithium metal batteries: a review. Nanoscale Adv 2:1828–1836

    Article  CAS  Google Scholar 

  16. Bhattacharyya R, Key B, Chen H, Best AS, Hollenkamp AF, Grey CP (2010) In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat Mater 9(6):504–510

    Article  CAS  Google Scholar 

  17. Choi JW (2016) Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1(4):1–4

    Article  Google Scholar 

  18. Harry KJ, Hallinan DT, Parkinson DY, MacDowell AA, Balsara NP (2014) Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat Mater 13(1):69–73

    Article  CAS  Google Scholar 

  19. Kotobuki M, Kanamura K, Sato Y, Yoshida T (2011) Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. J Power Sources 196(18):7750–7754

    Article  CAS  Google Scholar 

  20. Nykaza J, Savage A, Pan Q (2016) Polymerized ionic liquid diblock copolymer as solid-state electrolyte and separator in lithium-ion battery. Polymer 101: 311–318

    Article  CAS  Google Scholar 

  21. Ulderico U, Marco et al (2016) All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte. Solid State Ionics 296:13–17

    Article  Google Scholar 

  22. Taminato S, Okumura T, Takeuchi T, Kobayashi H (2018) Fabrication and charge-discharge reaction of all solid-state lithium battery using Li4-2Ge1-SO4 electrolyte. Solid State Ionics 326:52–57

    Article  CAS  Google Scholar 

  23. Cho S, Kim S, Kim W, Kim S, Ahn S (2018) All-solid-state lithium battery working without an additional separator in a polymeric electrolyte. Polymers 10(12):1364–1381

    Article  Google Scholar 

  24. Wang Y, Guo X, Lin Z, Yang Y, Wu L, Liu H, Yu H (2020) Dense sphene-type solid electrolyte through rapid sintering for solid-state lithium metal battery. Chem Res Chin Univ 36:439–446. https://doi.org/10.1007/s40242-020-0114-2

    Article  CAS  Google Scholar 

  25. Yin L, Yuan H, Kong L, Lu Z, Zhao Y (2020) Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries. Chem Commun 56:1251–1254. https://doi.org/10.1039/c9cc08382k

    Article  CAS  Google Scholar 

  26. Oh S, Nguyen VH, Bui VT, Nam S, Mahato M, Oh IK (2020) Intertwined nanosponge solid-state polymer electrolyte for rollable and foldable lithium-ion batteries. ACS Appl Mater Interfaces 12(10):11657–11668

    Article  CAS  Google Scholar 

  27. Li L, Deng Y, Chen G (2020) Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries. J Energy Chem 50:154–177. https://doi.org/10.1016/j.jechem.2020.03.017

    Article  CAS  Google Scholar 

  28. Wang Z, Gu H, Wei Z et al (2019) Preparation of new composite polymer electrolyte for long cycling all-solid-state lithium battery. Ionics 23(3):907–916

    Article  Google Scholar 

  29. Zhou J, Qian T, Liu J, Wang M, Zhang L, Yan C (2019) High safety all-solid-state lithium metal battery with high ionic conductivity thermoresponsive solid polymer electrolyte. Nano Lett 19(5):3066–3073

    Article  CAS  Google Scholar 

  30. Sun Y, Guan P, Liu Y, Xu H, Li S, Chu D (2019) Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery. Crit Rev Solid State Mater Sci 44(4):265–282

    Article  CAS  Google Scholar 

  31. Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195(15):4554–4569

    Article  CAS  Google Scholar 

  32. Meng G, Ma G, Ma Q et al (2017) Ceramic membrane fuel cells based on solid proton electrolytes. Solid State Ionics Diff React 178(7-10):697–703

    Article  Google Scholar 

  33. Xu XX, Wen ZY (2005) Glass and glass-ceramics solid electrolytes for lithium-ion battery. J Inorg Mater 20(1):21–26

    CAS  Google Scholar 

  34. Aihara Y, Kodama M, Nakahara K (1997) Characteristics of a thin film lithium-ion battery using plasticized solid polymer electrolyte. J Power Sources 65(1/2):143–147

    Article  CAS  Google Scholar 

  35. Wakihara M, Kadoma Y, Kumagai N, Mita H, Araki R, Ozawa K, Ozawa Y (2012) Development of nonflammable lithium ion battery using a new all-solid polymer electrolyte. J Solid State Electrochem 16(3):847–855

    Article  CAS  Google Scholar 

  36. Zhao Y, Mercier NB, Byon HR et al (2015) An aqueous lithium-iodine battery with solid polymer electrolyte-coated metallic lithium anode. Chempluschem 80(2):344–348

    Article  CAS  Google Scholar 

  37. Xu X, Dou et al (2016) Solid polymer electrolyte coating three-dimensional Sn/Ni bimetallic nanotube arrays for high performance lithium-ion battery anodes. J Alloys Compd 685:690–698

    Article  Google Scholar 

  38. Catti M (2007) First-principles modeling of lithium ordering in the LLTO (LixLa2/3 - x/3TiO3) superionic conductor. Chem Mater 19(16):3963–3972

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by the fund from the Science and Technology Research Project of Education Department of Hubei Province (B2017266), Wuhan, Applied Basic Research Project (2018010401011285), 4th Yellow Crane Talent Programme (08010004), and Achievements Transformation Project of Academicians in Wuhan (2018010403011341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixin Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, J., Wu, K., Jiang, J. et al. A novel ceramic/polyurethane composite solid polymer electrolyte for high lithium batteries. Ionics 27, 569–575 (2021). https://doi.org/10.1007/s11581-020-03838-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03838-5

Keywords

Navigation