Skip to main content
Log in

Development of nonflammable lithium ion battery using a new all-solid polymer electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

For solving the safety issue of lithium ion batteries, the choice of all-solid polymer electrolyte is one of the possible solutions. However, usual polyethylene oxide including lithium supporting agent has not enough lithium ion conductivity as electrolyte for practical use. Some of our research group (M. W. and H. M.) have tried the addition of plasticizer such as borate ester or aluminate ester (Al-PEG) into monomer mixture containing lithium salt for increasing the ionic conductivity resulting in polymer electrolyte after polymerization. For such all-solid polymer electrolyte (SPE), the ionic conductivity, a value of 10−3 S/cm has been attained at 60 °C and the value will be acceptable for practical use. Since the SPE also has nonflammable property, the combination of the SPE with suitable cathode and anode may produce a new all-solid polymer battery with safety. In the present study, the SPE containing Al-PEG and dimethoxy ethylene glycol mixture as the plasticizer was newly combined with spinel Li4Ti5O12 anode and olivine LiFePO4 cathode objecting for developing stationary battery. The cell performance of the new combination will be reported at 30 °C and 50 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Inaguma Y, Chen I, Itoh M, Uchida T, Ikuta H, Wakihara M (1993) Solid State Commun 86:689–693

    Article  CAS  Google Scholar 

  2. Kannno R, Maruyama M (2001) J Electrochem Soc 148:A742–A746

    Article  Google Scholar 

  3. Hayashi A, Minami K, Mizuno F, Tatsumisago M (2008) J Mater Sci 43:1885–1889

    Article  CAS  Google Scholar 

  4. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) Nature Mater Advance online publication, 1–5 (published online: 31 July 2011)

  5. Fergus JW (2010) J Power Sources 195:4554

    Article  CAS  Google Scholar 

  6. Bideau JL, Ducros J-B, Soudan P, Guyomard D (2011) Adv Func Mater 20:1–6

    Google Scholar 

  7. Fenton DE, Parker JM, Wright PV (1973) Polymer 14:589

    Article  CAS  Google Scholar 

  8. Armand MB, Chabagno JM, Duclot MJ (1979) Fast ion transport in solids. In: Vashista P, Mundy JN, Shenoy GK (eds.) Elsevier, Amsterdam

  9. MacCallum JR, Vincent CA (1987) Polymer Electrolyte Review 1. Elsevier, London

    Google Scholar 

  10. Armand MB, Gorecki W, Andreani R (1990) 2nd International Symposium on Polymer Electrolytes. In: Scrosati B (eds.), Elsevier, London, p21

  11. Kato Y, Yokoyama S, Ikuta H, Uchimoto Y, Wakihara M (2001) Electrochem Commun 3:128–130

    Article  CAS  Google Scholar 

  12. Kato Y, Hasumi K, Yokoyama S, Yabe T, Ikuta H, Uchimoto Y, Wakihara M (2002) Solid State Ionics 150:355

    Article  CAS  Google Scholar 

  13. Kato Y, Yokoyama S, Yabe T, Ikuta H, Uchimoto Y, Wakihara M (2004) Electrochim Acta 50:281

    Article  CAS  Google Scholar 

  14. Masuda Y, Seki M, Nakayama M, Wakihara M, Mita H (2006) Solid State Ionics 177:843–846

    Article  CAS  Google Scholar 

  15. Wakihara M, Nakayama M, Kato Y (2009) Lithium ion rechargeable batteries. In: Ozawa K (eds.) Wiley-VCH, Weinheim, Chap. 9, p218

  16. Kaneko F, Wada S, Nakayama M, Wakihara M, Koki J, Kuroki S (2009) Adv Func Mater 19:918–925

    Article  CAS  Google Scholar 

  17. Kaneko F, Wada S, Nakayama M, Wakihara M, Kuroki S (2009) ChemPhysChem 10:1911–1915

    Article  CAS  Google Scholar 

  18. Padihi AK, Najundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  19. Huang H, Yin S-C, Nazar LF (2001) Electrochem Solid-State Lett 4:A170

    Article  CAS  Google Scholar 

  20. Morgan D, Van der Ven A, Ceder G (2004) Electrochem Solid-State Lett 7:A30

    Article  CAS  Google Scholar 

  21. Yamada A, Koizumi H, Nishimura S, Sonoyama N, Kanno R, Nakamura T, Kobayashi Y (2006) Nat Mater 5:357

    Article  CAS  Google Scholar 

  22. Sommerfield A (1956) Thermodynamic and statistical mechanics. Lectures on Theoretical Physics Academic, New York

    Google Scholar 

  23. Hong JS, Maleki H, Al Hallaj S, Redey L, Selman JR (1998) J Electrochem Soc 145:1489

    Article  CAS  Google Scholar 

  24. Miyashiro H, (2006) Doctoral thesis, Tokyo Institute of Technology

  25. Hahn EL (1950) Phys Rv 80:580–594

    Article  Google Scholar 

  26. Tabata S, Hirakimoto T, Nishiura M, Watanabe M (2003) Electrochim Acta 48:2105–2112

    Article  CAS  Google Scholar 

  27. Colbow KM, Dahn JR, Haering RR (1989) J Power Source 26:397

    Article  CAS  Google Scholar 

  28. Ferg E, Gummow RJ, de Kock A, Thackeray AA (1994) J Electrochem Soc 141:L147

    Article  CAS  Google Scholar 

  29. Ohzuku T, Ueda A (1994) Solid State Ionics 69:201

    Article  CAS  Google Scholar 

  30. Scharner S, Weppner W, Schmid-Beurmann PJ (1999) Electrochem Soc 146:857

    Article  CAS  Google Scholar 

  31. Ariyoshi K, Yamato R, Ohzuku T (2005) Electrochim Acta 51:1125–1129

    Article  CAS  Google Scholar 

  32. Bakenov Z, Nakayama M, Wakihara M (2007) Electrochem Solid-State Lett 10:A208–A211

    Article  CAS  Google Scholar 

  33. Krause L, Lammana W, Summerfield J, Engle M, Korba G, Loch R, Atanasoski R (1997) J Power Sources 68:320–325

    Article  CAS  Google Scholar 

  34. Nakayama M, Wada S, Kuroki S, Nogami M (2009) Energy Environ Sci 3:1995–2002

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Matching Fund Program from the New Energy and Industrial Technology Development Organization (NEDO) of Japan (Project ID: 81063) for the financial support. Drs. M. Nakayama and S. Kuroki kindly measured PGStE-NMR spectroscopy in Tokyo Institute of Technology and gave useful comments and discussion. Dr. H. Miyashiro also kindly gave the heat flow data of the LFP electrode.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wakihara.

Additional information

Contribution to the symposium: “The Origin, Development, and Future of the Lithium-Ion Battery”, University of Texas at Austin, October 22, 2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakihara, M., Kadoma, Y., Kumagai, N. et al. Development of nonflammable lithium ion battery using a new all-solid polymer electrolyte. J Solid State Electrochem 16, 847–855 (2012). https://doi.org/10.1007/s10008-012-1643-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1643-5

Keywords

Navigation