Skip to main content

Advertisement

Log in

Dense Sphene-type Solid Electrolyte Through Rapid Sintering for Solid-state Lithium Metal Battery

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The sphene-type solid electrolyte with high ionic conductivity has been designed for solid-state lithium metal battery. However, the practical applications of solid electrolytes are still suffered by the low relative density and long sintering time of tens of hours with large energy consumption. Here, we introduced the spark plasma sintering technology for fabricating the sphene-type Li1.125Ta0.875Zr0.125SiO5 solid electrolyte. The dense electrolyte pellet with high relative density of ca. 97.4% and ionic conductivity of ca. 1.44× 10−5 S/cm at 30 °C can be obtained by spark plasma sintering process within the extremely short time of only ca. 0.1 h. Also the solid electrolyte provides stable electrochemical window of ca. 6.0 V(vs. Li+/Li) and high electrochemical interface stability toward Li metal anode. With the enhanced interfacial contacts between electrodes and electrolyte pellet by the in-situ formed polymer electrolyte, the solid-state lithium metal battery with LiFePO4 cathode can deliver the initial discharge capacity of ca. 154 mAh/g at 0.1 C and the reversible capacity of ca. 132 mAh/g after 70 cycles with high Coulombic efficiency of 99.5% at 55 °C. Therefore, this study demonstrates a rapid and energy efficient sintering strategy for fabricating the solid electrolyte with dense structure and high ionic conductivity that can be practically applied in solid-state lithium metal batteries with high energy densities and safeties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough J. B., Energy Environ. Sci., 2014, 7, 14

    Article  CAS  Google Scholar 

  2. Zhang X., Yu H., Acc. Chem. Res., 2020, 53, 368

    Article  CAS  PubMed  Google Scholar 

  3. He D., Wu T., Wang B., Yang Y., Zhao S., Wang J., Yu H., Chem. Commun., 2019, 55, 2234

    Article  CAS  Google Scholar 

  4. Lin D., Liu Y., Cui Y., Nat. Nanotechnol., 2017, 12, 194

    Article  CAS  PubMed  Google Scholar 

  5. Chen R., Li Q., Yu X., Chen L., Li H., Chem. Rev., 2019, DOI: https://doi.org/10.1021/acs.chemrev.9b00268

  6. Li H., Joule, 2019, 3, 911

    Article  CAS  Google Scholar 

  7. Cheng X. B., Zhao C. Z., Yao Y. X., Liu H., Zhang Q., Chemistry, 2019, 5, 74

    Article  CAS  Google Scholar 

  8. Sun C., Liu J., Gong Y., Wilkinson D. P., Zhang J., Nano Energy, 2017, 33, 363

    Article  CAS  Google Scholar 

  9. Wan J., Xie J., Mackanic D. G., Burke W, Bao Z., Cui Y., Materials Today Nano, 2018, 4, 1

    Article  CAS  Google Scholar 

  10. Robertson A., West A., Ritchie A., Solid State Ionics, 1997, 104, 1

    Article  CAS  Google Scholar 

  11. Malcherek T., Bosenick A., Cemič L., Fechtelkord M., Guttzeit A., J. Solid State Chem., 2004, 177, 3254

    Article  CAS  Google Scholar 

  12. Li Y., Han J. T., Wang C. A., Xie H., Goodenough J. B., J. Mater Chem., 2012, 22, 15357

    Article  CAS  Google Scholar 

  13. Guo X., Hao L., Yang Y., Wang Y., Lu Y., Yu H., J. Mater. Chem. A, 2019, 7, 25915

    Article  CAS  Google Scholar 

  14. Chan C. K., Yang T., Mark Weller J., Electrochim. Acta, 2017, 253, 268

    Article  CAS  Google Scholar 

  15. Gao Z., Sun H., Fu L., Ye F., Zhang Y., Luo W, Huang Y., Adv. Mater., 2018, 30, 1705702

    Article  CAS  Google Scholar 

  16. Zhang B., Tan R., Yang L., Zheng J., Zhang K., Mo S., Lin Z., Pan F., Energy Storage Materials, 2018, 10, 139

    Article  Google Scholar 

  17. Luo W., Yu C., Hu L., Encyclopedia of Inorganic and Bioinorganic Chemistry, 2011, 1

  18. Li M., Wang C., Chen Z., Xu K., Lu J., Chem. Rev., 2020, DOI: https://doi.org/10.1021/acs.chemrev.9b00531

  19. Hou W., Guo X., Shen X., Amine K., Yu H., Lu J., Nano Energy, 2018, 52, 279

    Article  CAS  Google Scholar 

  20. Xia S., Wu X., Zhang Z., Cui Y., Liu W., Chemistry, 2019, 5, 753

    Article  CAS  Google Scholar 

  21. Jiang C., Li H., Wang C., Sci. Bull., 2017, 62, 1473

    Article  CAS  Google Scholar 

  22. Manthiram A., Yu X., Wang S., Nat. Rev. Mater., 2017, 2, 1

    Article  CAS  Google Scholar 

  23. Ramakumar S., Deviannapoorani C., Dhivya L., Shankar L. S., Murugan R., Prog. Mater. Sci., 2017, 88, 325

    Article  CAS  Google Scholar 

  24. Chen R., Qu W., Guo X., Li L., Wu F., Mater. Horiz., 2016, 3, 487

    Article  CAS  Google Scholar 

  25. Nolan A. M., Zhu Y., He X., Bai Q., Mo Y., Joule, 2018, 2, 2016

    Article  CAS  Google Scholar 

  26. Zhao N., Khokhar W., Bi Z., Shi C., Guo X., Fan L. Z., Nan C. W., Joule, 2019, 3, 1190

    Article  CAS  Google Scholar 

  27. Huang W. L., Zhao N., Bi Z. J., Shi C., Guo X. X., Fan L. Z., Nan C. W., Materials Today Nano, 2020, 10, 100075

    Article  Google Scholar 

  28. Xiong S., He X., Han A., Liu Z., Ren Z., McElhenny B., Nolan A. M., Chen S., Mo Y., Chen H., Adv. Energy. Mater., 2019, 9, 1803821

    Article  CAS  Google Scholar 

  29. Wang Q., Wu J. F., Lu Z., Ciucci F., Pang W. K., Guo X., Adv. Funct. Mater., 2019, 29, 1904232

    Article  CAS  Google Scholar 

  30. Cook L., Plante E., Ceram. Trans., 1992, 27, 193

    CAS  Google Scholar 

  31. Chi C., Katsui H., Tu R., Goto T., Mater. Chem. Phys., 2014, 143, 1338

    Article  CAS  Google Scholar 

  32. Fan J., Liu H., Shi X., Bai S., Shi X., Chen L., Acta. Mater., 2013, 61, 4297

    Article  CAS  Google Scholar 

  33. Zhao N., Fang R., He M. H., Chen C., Li Y. Q., Bi Z. J., Guo X. X., Rare. Metals., 2018, 37, 473

    Article  CAS  Google Scholar 

  34. Huo H., Chen Y., Li R., Zhao N., Luo J., Pereira da Silva J. G., Mücke R., Kaghazchi P., Guo X., Sun X., Energy & Environmental Science, 2020, 13, 127

    Article  CAS  Google Scholar 

  35. Lin Z., Guo X., Yu H., Nano Energy, 2017, 41, 646

    Article  CAS  Google Scholar 

  36. Li Y., Wang Z., Li C., Cao Y., Guo X., J. Power Sources, 2014, 248, 642

    Article  CAS  Google Scholar 

  37. Narayanan S., Ramezanipour F., Thangadurai V., J. Phys. Chem. C, 2012, 116, 20154

    Article  CAS  Google Scholar 

  38. Kali R., Mukhopadhyay A., J. Power Sources, 2014, 247, 920

    Article  CAS  Google Scholar 

  39. Guillon O., Gonzalez-Julian J., Dargatz B., Kessel T., Schierning G., Räthel J., Herrmann M., Adv. Eng. Mater., 2014, 16, 830

    Article  CAS  Google Scholar 

  40. Huang X., Liu C., Lu Y., Xiu T., Jin J., Badding M. E., Wen Z., J. Power Sources, 2018, 382, 190

    Article  CAS  Google Scholar 

  41. Famprikis T., Canepa P., Dawson J. A., Islam M. S., Masquelier C., Nat. Mater., 2019, 18, 1278

    Article  CAS  PubMed  Google Scholar 

  42. Zhan X., Lai S., Gobet M. P., Greenbaum S. G., Shirpour M., Phys. Chem. Chem. Phys., 2018, 20, 1447

    Article  CAS  PubMed  Google Scholar 

  43. Zhang L. C., Yang J. F., Gao Y. X., Wang X. P., Fang Q. F., Chen C. H., J. Power Sources, 2017, 355, 69

    Article  CAS  Google Scholar 

  44. Lu Y., Huang X., Song Z., Rui K., Wang Q., Gu S., Yang J., Xiu T., Badding M. E., Wen Z., Energy Storage Materials, 2018, 15, 282

    Article  Google Scholar 

  45. Huo H., Chen Y., Zhao N., Lin X., Luo J., Yang X., Liu Y., Guo X., Sun X., Nano Energy, 2019, 61, 119

    Article  CAS  Google Scholar 

  46. Huo H., Luo J., Thangadurai V., Guo X., Nan C. W., Sun X., ACS Energy Lett., 2019, 5, 252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianwei Guo or Haijun Yu.

Additional information

Supported by the Beijing Natural Science Foundation of China(Nos.KZ201910005002, JQ19003, L182009), the National Natural Science Foundation of China(Nos.51622202, 21974007), the National Key R&D Program of China(No.2018YFB0104300), and the Project of Youth Talent Plan of Beijing Municipal Education Commission, China(No.CIT&TCD201804013).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guo, X., Lin, Z. et al. Dense Sphene-type Solid Electrolyte Through Rapid Sintering for Solid-state Lithium Metal Battery. Chem. Res. Chin. Univ. 36, 439–446 (2020). https://doi.org/10.1007/s40242-020-0114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0114-2

Keywords

Navigation