Skip to main content
Log in

Optical and electrical properties of the yavapaiite-like molybdate NaAl(MoO4)2

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polycrystalline sample of the sodium aluminum molybdate, NaAl(MoO4)2, was prepared by conventional solid-state reaction method. Ultraviolet-visible-near-infrared (UV-Vis-NIR) diffuse reflectance spectroscopy revealed that the optical band gap values of this material at ambient conditions are 3.77 and 3.35 eV for direct and indirect transition, respectively. We also report the electrical properties of the sample using alternating current (AC) complex impedance spectroscopy (CIS) technique over a frequency range of 40 Hz to 5 MHz at several temperatures in the range 693–883 K. These studies showed that temperature dependence of the direct current (DC) conductivity (σdc) and the relaxation frequency (fr) obey the Arrhenius law. However, the obtained values of the activation energy are different, confirming that ionic transport in the material is not due to a simple hopping mechanism. Based on DC conductivity data, NaAl(MoO4)2 can be classified as low ionic conductor. The differential thermal analysis (DTA) shows the presence of a structural phase transition at 580 °C, which is confirmed by the variation of fr and σdc as a function of temperature. The bond valence sum map (BVSM) analysis indicates that the sodium ions seem to be trapped in their own sites. Consequently, the Na+ ion transport in the interlayer spaces is very difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hanuza J, Maczka M, Hermanowicz K, Dereń PJ, Stręk W, Folcik L, Drulis H (1999) Spectroscopic properties and magnetic phase transitions in scheelite MICr(MoO4)2 and wolframite MICr(WO4)2 crystals, where MI = Li, Na, K, and Cs. J Solid State Chem 148:468–478. https://doi.org/10.1006/jssc.1999.8482

    Article  CAS  Google Scholar 

  2. Waśkowska A, Gerward L, Olsen JS, Maczka M, Lis T, Pietraszko A, Morgenroth W (2005) Low-temperature and high-pressure structural behaviour of NaBi(MoO4)2-an X-ray diffraction study. J Solid State Chem 178:2218–2224. https://doi.org/10.1016/j.jssc.2005.05.001

    Article  CAS  Google Scholar 

  3. Thomas S, Ingo H (2011) Scheelite-type sodium neodymium(III) ortho-oxidomolybdate(VI), NaNd[MoO4]2. Acta Crystallogr E67:71. https://doi.org/10.1107/S1600536811046976

    Article  CAS  Google Scholar 

  4. Stedman NJ, Cheetham AK, Battle PD (1994) Crystal structures of two sodium yttrium molybdates: NaY(MoO4)2 and Na5Y(MoO4)4. J Mater Chem 4:707–711. https://doi.org/10.1039/JM9940400707

    Article  CAS  Google Scholar 

  5. Maczka M, Souza Filho AG, Paraguassu W, Freire PTC, Mendes Filho J, Hanuza J (2012) Pressure-induced structural phase transitions and amorphization in selected molybdates and tungstates. Prog Mater Sci 57:1335–1381. https://doi.org/10.1016/j.pmatsci.2012.01.001

    Article  CAS  Google Scholar 

  6. Yang XX, Fu ZL, Yang YM, Zhang CP, Wu ZJ, Zheng TQ (2015) Optical temperature sensing behavior of high-efficiency upconversion: Er3+-Yb3+ co-doped NaY(MoO4)2 phosphor. J Am Ceram Soc 98:2595–2600. https://doi.org/10.1111/jace.13624

    Article  CAS  Google Scholar 

  7. Penã A, Solé R, Jna G, Massons J, Díaz F, Aguilo M (2006) Primary crystallization region of NaAl(MoO4)2, Cr3+ doping, crystal growth, and characterization. Chem Mater 18:442–448. https://doi.org/10.1021/cm052054j

    Article  CAS  Google Scholar 

  8. Yu Y, Zhang LZ, Huang YS, Lin ZB, Wang GF (2013) Growth, crystal structure, spectral properties and laser performance Yb3+: NaLu(MoO4)2 crystal. Laser Phys 23:1–6. https://doi.org/10.1088/1054-660X/23/10/105807

    Article  CAS  Google Scholar 

  9. Maczka M, Jiang F, Kojima S, Hanuza J (2001) Brillouin-scattering study of KAl(MoO4)2 and NaAl(MoO4)2. J Mol Struct 563-564:365–369. https://doi.org/10.1016/S0022-2860(00)00938-8

    Article  CAS  Google Scholar 

  10. Kolitsch U, Maczka M, Hanuza J (2003) NaAl(MoO4)2: a rare structure type among layered yavapaiite-related AM(XO4)2 compounds. Acta Crystallogr E59:i10–i13. https://doi.org/10.1107/S1600536803000990

    Article  CAS  Google Scholar 

  11. Graeber EJ, Rosenzweig A (1971) The crystal structures of yavapaiite, KFe(SO4)2, and goldichite, KFC(SO4 ) 2.4H2O. Am Mineral 56:1917–1933

    CAS  Google Scholar 

  12. Anthony JW, McLean WJ, Laughon RB (1972) The crystal structure of yavapaiite: a discussion. Am Mineral 57:1546–1549

    CAS  Google Scholar 

  13. Brandenburg K (2005) DIAMOND version 3.0e. Crystal Impact GbR, Bonn

    Google Scholar 

  14. Mazza D (2001) Modeling ionic conductivity in Nasicon structures. J Solid State Chem 156:154–160. https://doi.org/10.1006/jssc.2000.8975

    Article  CAS  Google Scholar 

  15. Sale M, Avdeev M (2012) 3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes. J Appl Crystallogr 45:1054–1056. https://doi.org/10.1107/S0021889812032906

    Article  CAS  Google Scholar 

  16. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69. https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  17. González-Platas J, González-Silgo C, Ruiz-Pérez C (1999) VALMAP2.0: contour maps using the bond-valence-sum method. J Appl Crystallogr 32:341–344. https://doi.org/10.1107/S0021889898010279

    Article  Google Scholar 

  18. Mazza D, Ronchetti S, Bohnké O, Duroy H, Fourquet JL (2002) Modeling Li-ion conductivity in fast ionic conductor La2/3-xLi3xTiO3. Solid State Ionics 149:81–88. https://doi.org/10.1016/S0167-2738(02)00100-5

    Article  CAS  Google Scholar 

  19. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallogr B41:244–247. https://doi.org/10.1107/S0108768185002063

    Article  CAS  Google Scholar 

  20. Adams S (2004) softbv version 0.96. http://www.softbv.net/,2004. Accessed 17 July 2017

  21. Adams S (2006) Bond valence analysis of structure–property relationships in solid electrolytes. J Power Sources 159:200–204. https://doi.org/10.1016/j.jpowsour.2006.04.085

    Article  CAS  Google Scholar 

  22. Adams S (2006) From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid State Ionics 177:1625–1630. https://doi.org/10.1016/j.ssi.2006.03.054

    Article  CAS  Google Scholar 

  23. Adams S (2000) Modelling ion conduction pathways by bond valence pseudopotential maps. Solid State Ionics 136-137:1351–1361. https://doi.org/10.1016/S0167-2738(00)00576-2

    Article  CAS  Google Scholar 

  24. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  25. Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Report LAUR86-748. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  26. Toby BH (2001) EXPGUI, graphical user interfaces for GSAS. J Appl Crystallogr 34:210–213. https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  27. He T, Yao J (2003) Photochromism of molybdenum oxide. J Photochem Photobiol C: Photochem Rev 4:125–143. https://doi.org/10.1016/S1389-5567(03)00025-X

    Article  CAS  Google Scholar 

  28. Liu J, Lu Y, Liu J, Yang X, Yu X (2010) Investigation of near infrared reflectance by tuning the shape of SnO2 nanoparticles. J Alloys Compd 496:261–264. https://doi.org/10.1016/j.jallcom.2010.01.053

    Article  CAS  Google Scholar 

  29. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46. https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  30. Abdelkader D, Jebali A, Larbi A, Harizi A, Ben Rabeh M, Khemiri N, Antoni F, Kanzari M (2016) Synthesis, characterization, structural and optical absorption behavior of SnxSbySz powders. Adv Power Technol 27:734–741. https://doi.org/10.1016/j.apt.2016.02.034

    Article  CAS  Google Scholar 

  31. Nogueira IC, Cavalcante LS, Pereira PFS, de Jesus MM, Rivas Mercury JM, Batista NC, Li MS, Long E (2013) Rietveld refinement, morphology and optical properties of (Ba1-xSrx)MoO4 crystals. J Appl Crystallogr 46:1434–1446. https://doi.org/10.1107/S0021889813020335

    Article  CAS  Google Scholar 

  32. Zhao D, Zhang H, Xie Z, Zhang WL, Yang SL, Cheng WD (2009) Synthesis, crystal and electronic structures of compounds AM(PO4)2 (A=Sr, M=Ti, Sn; A=Ba , M=Sn). Dalton Trans 2009:5310–5318. https://doi.org/10.1039/B822336J

    Article  Google Scholar 

  33. Pawlikowska M, Piatkowska M, Tomaszewicz E (2017) Synthesis and thermal stability of rare-earths molybdates and tungstates with fluorite- and scheelite-type structure. J Therm Anal Calorim 130:69–76. https://doi.org/10.1007/s10973-017-6127-5

    Article  CAS  Google Scholar 

  34. Vali R (2011) Electronic properties and phonon spectra of SrMoO4. Comput Mater Sci 50:2683–2687. https://doi.org/10.1016/j.commatsci.2011.04.018

    Article  CAS  Google Scholar 

  35. Seleznev VN, Medvedeva NI, Denisova TA, Nevmyvako RD, Buzlukov AL, Kadyrova YM, Solodovnikov SF (2016) Electronic structure and quadrupole interactions in triple molybdates Li2M3Al(MoO4)4, M = Cs, Rb. J Struct Chem 57:275–280. https://doi.org/10.1134/S0022476616020050

    Article  CAS  Google Scholar 

  36. Maczka M, Kojima S, Hanuza J (1999) Raman spectroscopy of KAl(MoO4)2 and NaAl(MoO4)2 single crystals. J Raman Spectrosc 30:339–345. https://doi.org/10.1002/(SICI)1097-4555(199904)30:4<339::AID-JRS378>3.0.CO;2-8

    Article  CAS  Google Scholar 

  37. Paraguassu W, Souza Filho AG, Maczka M, Freire PTC, Melo FEA, Mendes Filho J, Hanuza J (2004) Raman scattering study of NaAl(MoO4)2 crystal under high pressures. J Phys Condens Matter 16:5151–5161. https://doi.org/10.1088/0953-8984/16/28/033

    Article  CAS  Google Scholar 

  38. Maczka M, Hermanowicz K, Tomaszewski PE, Zawadzki M, Hanuza J (2008) Vibrational and luminescence studies of MIIn(MoO4)2 (MI = K, Rb) and MIAl(MoO4)2 (MI = K, Na) molybdates doped with chromium(III) prepared via the Pechini method. Opt Mater 31:167–175. https://doi.org/10.1016/j.optmat.2008.02.010

    Article  CAS  Google Scholar 

  39. Ben Said R, Louati B, Guidara K (2013) Electrical properties and conduction mechanism in the sodium nickel diphosphate. Ionics 20:703–711. https://doi.org/10.1007/s11581-013-1027-6

    Article  CAS  Google Scholar 

  40. Dridi W, Zid MF, Maczka M (2017) Electrical and vibrational studies of Na2K2Cu(MoO4)3. Adv Mater Sci Eng 2017:1–8. https://doi.org/10.1155/2017/6123628

    Article  Google Scholar 

  41. Hanuza J, Maczka M (1994) Vibrational properties of the double molybdates MX(MoO4) 2 family (M = Li, Na, K, Cs; X = Bi, Cr) Part I. Structure and infrared and Raman spectra in the polycrystalline state. Vib Spectrosc 7:85–96. https://doi.org/10.1016/0924-2031(94)85044-5

    Article  CAS  Google Scholar 

  42. Maczka M, Ptak M, Luz-Lima C, Freire PTC, Paraguassu W, Guerini S, Hanuza J (2011) Pressure-induced phase transitions in multiferroic RbFe(MoO4)2-Raman scattering study. J Solid State Chem 184:2812–2817. https://doi.org/10.1016/j.jssc.2011.08.032

    Article  CAS  Google Scholar 

  43. Maczka M, Hermanowicz K, Tomaszewski PE, Hanuza J (2004) Lattice dynamics and phase transitions in KAl(MoO4)2, RbAl(MoO4)2 and CsAl(MoO4)2 layered crystals. J Phys Condens Matter 16:3319–3328. https://doi.org/10.1088/0953-8984/16/20/003

    Article  CAS  Google Scholar 

  44. Kozhevnikova NM (2013) Synthesis and study of RbSrR(MoO4)3 ternary molybdates (R = Nd, Sm, Eu, Gd) with scheelite-like structure. Russ J Inorg Chem 58:280–283. https://doi.org/10.1134/S0036023613020113

    Article  CAS  Google Scholar 

  45. Hanuza J, Macalik L, Hermanowicz K (1994) Vibrational properties of KLn(MoO4)2 crystals for light rare earth ions from lanthanum to terbium. J Mol Struct 319:17–30. https://doi.org/10.1016/0022-2860(93)07947-U

    Article  CAS  Google Scholar 

  46. Hara K, Takenaka H, Ishibashi Y (1988) Raman scattering study of scheelite-type double molybdates. J Phys Soc Jpn 57:3220–3225. https://doi.org/10.1143/JPSJ.57.3220

    Article  CAS  Google Scholar 

  47. Elwej R, Oueslati A, Hlel F (2012) Electrical and dielectric properties of C7H12N2[H2PO4]2.1/2H2O. J Adv Dielectr 2:1–10. https://doi.org/10.1142/S2010135X12300149

    Article  CAS  Google Scholar 

  48. Johnson D (1990) Zview version 3.2b, Scribner Assciates, Inc., Southen Pines

  49. Ram M (2010) Role of grain boundary in transport properties of LiCo3/5Mn2/5VO4 ceramics. Physica B 405:602–605. https://doi.org/10.1016/j.physb.2009.09.073

    Article  CAS  Google Scholar 

  50. Louati B, Guidara K (2011) Dielectric relaxation and ionic conductivity studies of LiCaPO4. Ionics 17:633–640. https://doi.org/10.1007/s11581-011-0555-1

    Article  CAS  Google Scholar 

  51. Zaafouri A, Megdiche M, Gargouri M (2015) Studies of electric, dielectric, and conduction mechanism by OLPT model of Li4P2O7. Ionics 21:1867–1879. https://doi.org/10.1007/s11581-015-1365-7

    Article  CAS  Google Scholar 

  52. Djemal A, Louati B, Guidara K (2016) Synthesis and characterization of orthovanadates compounds Li(1-x)NaxCdVO4 (x=0, 0.25). J Alloys Compd 683:610–618. https://doi.org/10.1016/j.jallcom.2016.05.107

    Article  CAS  Google Scholar 

  53. Ben Said R, Louati B, Guidara K (2016) Conductivity behaviour of the new pyrophosphate NaNi1.5P2O7. Ionics 22:241–249. https://doi.org/10.1007/s11581-015-1537-5

    Article  CAS  Google Scholar 

  54. Dessemond L, Muccillo R, Henault M, Kleitz M (1993) Electric conduction-blocking effects of voids and second phases in stabilized zirconia. Appl Phys A 57:57–60. https://doi.org/10.1007/BF00331217

    Article  Google Scholar 

  55. Sonni M (2015) Mastère en chimie de l’état solide, Université de Tunis ElManar , Tunisie

  56. Ennajeh I, Zid MF, Driss A (2013) Synthesis, crystal structure and electrical properties of the molybdenum oxide Na1.92Mg2.04Mo3O12. J Crystallogr 2013:1–7. https://doi.org/10.1155/2013/146567

    Article  Google Scholar 

  57. Dridi W, Zid MF, Maczka M (2018) Characterization of a sodium molybdate compound β-Na4Cu(MoO4)3. J Alloys Compd 731:955–963. https://doi.org/10.1016/j.jallcom.2017.10.111

    Article  CAS  Google Scholar 

  58. Grin J, Nygren M (1983) Compositional dependence of the ionic conductivity of Na2.2Zn0.9(MoO4)2 with Zn partially replaced by Sc or Cd. Solid State Ionics 9–10:859–862. https://doi.org/10.1016/0167-2738(83)90102-9

    Article  Google Scholar 

  59. Sorokin NI (2009) Ionic conductivity of double sodium–scandium and cesium–zirconium molybdates. Phys Solid State 51:1128–1130. https://doi.org/10.1134/S1063783409060079

    Article  CAS  Google Scholar 

  60. Solodovnikov SF, Solodovnikova ZA, Zolotova ES, Yudin VN, Gulyaeva OA, Tushinova YL, Kuchumov BM (2017) Nonstoichiometry in the systems Na2MoO4MMoO4 (M = Co, Cd), crystal structures of Na3.36Co1.32(MoO4)3, Na3.13Mn1.43(MoO4)3 and Na3.72Cd1.14(MoO4)3, crystal chemistry, compositions and ionic conductivity of alluaudite-type double molybdates and tungstates. J Solid State Chem 253:121–123. https://doi.org/10.1016/j.jssc.2017.05.031

    Article  CAS  Google Scholar 

  61. Savina AA, Morozov VA, Buzlukov AL, Arapova IY, Stefanovich SY, Baklanova YV, Denisova TA, Medvedeva NI, Bardet M, Hadermann J, Lazoryak BI, Khaikina EG (2017) New solid electrolyte Na9Al(MoO4)6: structure and Na+ ion conductivity. Chem Mater 29(20):8901–8913. https://doi.org/10.1021/acs.chemmater.7b03989

    Article  CAS  Google Scholar 

  62. Savina AA, Solodovnikov SF, Basovich OM, Solodovnikova  ZA, Belov DA, Pokholok KV, Gudkova IA, Stefanovich SY, Lazoryak BI, Khaikina EG (2013) New double molybdate Na9Fe(MoO4)6: synthesis, structure, properties. J Solid State Chem 205:149–153. https://doi.org/10.1016/j.jssc.2013.07.007

    Article  CAS  Google Scholar 

  63. Baur WH, Dygas JR, Whitmore DH, Faber J (1986) Neutron powder diffraction study and ionic conductivity of Na2Zr2SiP2O12 and Na3Zr2Si2PO12. Solid State Ionics 18:935–943. https://doi.org/10.1016/0167-2738(86)90290-0

    Article  Google Scholar 

  64. Mellander BE (1982) Electrical conductivity and activation volume of the solid electrolyte phase α-AgI and the high-pressure phase fcc AgI. Phys Rev B 26:5886–5896. https://doi.org/10.1103/PhysRevB.26.5886

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the “Laboratoire de Matériaux, Cristallochimie et Thermodynamique Appliquée, FST, TUNISIA” for the powder data collection, the staff of “Laboratoire de valorisation des matériaux utiles, CNRSM, TUNISIA” for TG analysis, the staff of “Laboratoire d’Électrochimie-Corrosion, Métallurgie et Chimie Minérale, USTHB, ALGERIA” for the DTA measurement, the staff of “Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, TUNISIA” for (UV-Vis-NIR) diffuse reflectance, and the staff of “Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Application, CNRSM, TUNISIA” for the conductivity and Raman measurements.

Funding

Funding for this research was provided by the Ministry of Higher Education and Scientific Research in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Ben Smail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jendoubi, I., Ben Smail, R., Maczka, M. et al. Optical and electrical properties of the yavapaiite-like molybdate NaAl(MoO4)2. Ionics 24, 3515–3533 (2018). https://doi.org/10.1007/s11581-018-2490-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2490-x

Keywords

Navigation