Skip to main content
Log in

Conductivity behavior of the new pyrophosphate NaNi1.5P2O7

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

NaNi1.5P2O7 compound was obtained by the classic ceramic method at high temperature and was characterized by XRD. It was found to crystallize in the triclinic symmetry with the P-1 space group. The electrical conductivity and modulus characteristics of the system have been investigated in the temperature and the frequency range 586–723 K and 200 Hz–1 MHz, respectively, by means of impedance spectroscopy. The ac conductivity for grain contribution was interpreted using the universal Jonscher’s power law. The exponent s decreased with increasing temperature revealing that the conduction inside the studied material is insured by the correlated barrier hopping (CBH) model. The conduction mechanism was explained with the help of Elliot’s theory, and the Elliot’s parameters were determined. Thermodynamic parameters such as the free energy for dipole relaxation ΔG, the enthalpy ΔH, and the change in entropy ΔS have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Elmaadi A, Boukhari A, Holt E, Flandrois M (1994) Synthesis crystal structure and magnetic properties of K2MnP2O. SCR Acad Sci Paris 318:765–770

    CAS  Google Scholar 

  2. Lukaszewicz K (1967) Crystal structure of α-Ni2P2O7. Bull Acad Polym Sci Chim 15:47–51

    CAS  Google Scholar 

  3. Calvo C (1965) Refinement of the crystal structure of β-Mg2P2O7. Can J Chem 43:1139–1147

    Article  CAS  Google Scholar 

  4. Riou D, Labbe P, Goreaud MCR (1988) The diphosphate KFeP2O7: structure and possibilities for insertion in the host framework. Acad Sci Paris C 307:903–907

    CAS  Google Scholar 

  5. Riou D, Leligny H, Pham C, Labbe P, Raveau B (1991) BaNiP2O7, a triclinic diphosphate with a modulated structure of the displacive type. Acta Crystallogr Sect B 47:608–617

    Article  Google Scholar 

  6. Riou D, Raveau B (1991) Structure of SrCoP2O7. Acta Crystallogr B 47:1708–1709

    Article  Google Scholar 

  7. Rissouli K, Benkhouja K, Sadel A, Bettach M, Zahir M, Giorgi M, Pierrot M (1996) A mixed nickel- lithium pyrophosphate, LiNi1.5P2O7. Acta Crystallogr Sect C 52:2960–2963

    Article  Google Scholar 

  8. Rissouli K, Bettach M, Benkhouja K, Sadel A, Zahir M, Giorgi M, Pierrot M, Derrory A, Drillon M (1998) Magnetic susceptibility and specific heat of LiNi1.5P2O7. Ann Chem Sci Mater 23:103–106

    Article  CAS  Google Scholar 

  9. Rissouli K, Benkhouja K, Touaiher M, Sadel A, Aride J, Derrory A, Lambour JP, Drillon M (2001) Synthesis and thermodynamic properties of the new monodimensional diphosphate LiM1.5P2O7 Où M2+ = Co2+et Cu2+. Phys Chem News 2:119–123

    CAS  Google Scholar 

  10. MacDonald JR (1987) Impedance spectroscopy: emphasizing solid materials and systems. Wiley, New York, pp 215–238

    Google Scholar 

  11. Nallamuthua N, Prakasha I, Satyanarayanaa N, Venkateswarlu M (2011) Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol–gel route. Alloys Compd 509:1138–1145

    Article  Google Scholar 

  12. López DM, Morales JCR, Martínez JP, Sedeño MCM, Barrado JRR (2011) Influence of phase segregation on the bulk and grain boundary conductivity of LSGM electrolytes. Solid State Ionics 186:44–52

    Article  Google Scholar 

  13. Christie GM, Van Berkel FPF (1996) Microstructure-ionic conductivity relationships in ceria-gadolinia electrolytes. Solid State Ionics 83:17–27

    Article  CAS  Google Scholar 

  14. Abrantes CC, Labrincha JA, Frade JR (2000) Application of the brick layer model to describe the grain boundary properties of strontium titanate ceramics. Eur Ceram Soc 20:1603–1609

    Article  CAS  Google Scholar 

  15. Gerhardt R, Nowick AS (1986) The grain boundary conductivity effect in ceria doped with various trivalent cations.PartI-electrical behavior. Am Ceram Soc 69:641–646

    Article  CAS  Google Scholar 

  16. Verkerk MJ, Middlehuis BJ, Burggraaf AJ (1982) Effect of grain boundaries on the conductivity of high-purity ZrO2-Y2O3 ceramics. Solid State Ionics 6:1159–1170

    Article  Google Scholar 

  17. Biju V, Khadar MA (2003) Dielectric properties of nanostructured nickel oxide. J Mater Sci 38:4055–4063

    Article  CAS  Google Scholar 

  18. Kurien S, Mathew J, Sebastian S, Potty SN, George KC (2006) Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate. Mater Chem Phys 98:470–476

    Article  CAS  Google Scholar 

  19. Ghosh A (1990) Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. Phys Rev B 41:1479–1488

    Article  CAS  Google Scholar 

  20. Le Cleac’h X (1979) Laws of variation and order of magnitude of the AC conductivity of bulk noncrystalline chalcogenides. J Phys 40:417–428

    Article  Google Scholar 

  21. Pollak M, Pike GE (1972) Ac conductivity of glasses. Phys Rev Lett 28:1449–1451

    Article  CAS  Google Scholar 

  22. Gudmundsson JT, Svavarsson HG, Gudjonsson S, Gislason HP (2003) Frequency-dependent conductivity in lithium-diffused and annealed GaAs. Physica B 340:324–328

    Article  Google Scholar 

  23. Pike GE (1972) Ac conductivity of scandium oxide and a new hopping model for conductivity. Phys Rev B 6:1572–1580

    Article  CAS  Google Scholar 

  24. Chaudhuri BK, Chaudhuria JK, Som KK (1989) Concentration and frequency dependences of A.C. Conductivity and dielectric constant of iron-bismuth oxide glasses. J Phys Chem Solids 50:1149–1155

    Article  CAS  Google Scholar 

  25. Chaudhuri BK, Chaudhuri K, Som KK (1989) Concentration dependences of D.C. Conductivity of the iron-bismuth oxide glasses. J Phys Chem Solids 50:1137–1147

    Article  CAS  Google Scholar 

  26. Zolanvari A, Goyal N, Tripathi SK (2004) Electrical properties of a-GexSe100-x pramana. J Phys 63:617–625

    CAS  Google Scholar 

  27. Kahouli A, Sylvestre A, Jomni F, Yangui B, Legrand J (2012) Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylene C thin films. J Phys Chem A 116:1051–1058

    Article  CAS  Google Scholar 

  28. Zaafouri A, Megdiche M, Gargouri M (2014) AC conductivity and dielectric behavior in lithium and sodium diphosphate LiNa3P2O7. Alloys Compd 584:152–158

    Article  CAS  Google Scholar 

  29. Kohlrausch Pogg R (1854) Théorie des elecktrischen Ru”ckstandes in der leindener flasche. Ann Phys Chem 91:179–214

    Article  Google Scholar 

  30. Williams G, Watts DC (1970) Exprimental inorganic chemistry. Trans Faraday Soc 66:80–85

    Article  CAS  Google Scholar 

  31. Hlel F, Rhaeim A, Guerfel T, Guidara K (2006) Synthesis, calorimetric study, infrared spectroscopy and crystal structure investigation of β[TetraethylammoniumTetramethylammoniumTetrachlorozincate(II)][β](C2H5)4N][(CH3)4N]ZnCl4. Naturforchh B 61:1002–1006

    CAS  Google Scholar 

  32. Cao W, Gerhardt R (1990) Calculation of various relaxation times and conductivity for a single dielectric relaxation process. Solid State Ionics 42:213–221

    Article  CAS  Google Scholar 

  33. Eyring H (1936) Plasticity and diffusion as examples of absolute reaction rates. Chem Phys 4:283–291

    CAS  Google Scholar 

  34. Hashem HA, Abouelhassan S (2005) Dielectric and thermodynamic properties of Tin (II) sulfide thin films. Chin J Phys 43:955–966

    CAS  Google Scholar 

  35. Sarode AV, Kumbharkhane AC (2011) Dielectric relaxation study of poly(ethylene glycols) using TDR technique. Mol Liq 164:226–232

    Article  CAS  Google Scholar 

  36. Ben Said R, Louati B, Guidara K, Kamoun S (2014) Thermodynamic properties and application of CBH model in the ac conductivity of LiNi1.5P2O7 ceramic. Ionics 20:1071–1078

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ben Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Said, R., Louati, B. & Guidara, K. Conductivity behavior of the new pyrophosphate NaNi1.5P2O7 . Ionics 22, 241–249 (2016). https://doi.org/10.1007/s11581-015-1537-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1537-5

Keyword

Navigation