Skip to main content
Log in

Dielectric relaxation and ionic conductivity studies of LiCaPO4

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The AC conductivity of the LiCaPO4 compound has been measured in the temperature range 634–755 K and the frequency range 300 Hz–5 MHz. The impedance data were fitted to an equivalent circuit consisting of series combination of grains, grains boundary, and electrode elements. Dielectric data were analyzed using complex electrical modulus M* at various temperatures. The modulus plots are characterized by the presence of two relaxation peaks thermally activated. The activation energies obtained from the analysis of M″ (0.90 eV) and conductivity data (0.94 eV) are very close, revealing an ionic hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mercier M, Gareyte J, Bertaut EF (1967) C R Acad Sci Paris B 264:979

    Google Scholar 

  2. Bertaut EF, Mercier M (1971) Mater Res Bull 6:907–921

    Article  CAS  Google Scholar 

  3. Rivera JP, Schmid H (1994) Ferroelectrics 161:91

    Article  CAS  Google Scholar 

  4. Rivera JP (1994) Ferroelectrics 161:147

    Article  CAS  Google Scholar 

  5. Wolfenstine J (2006) J Power Sources 158:1431

    Article  CAS  Google Scholar 

  6. Phadhi K, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  Google Scholar 

  7. Yamada A, Hosoya M, Chung S-C, Kudo Y, Hinokuma K, Liu K-Y, Nishi Y (2003) J Power Sources 119:232

    Article  Google Scholar 

  8. Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino FA (2001) J Power Sources 97:430

    Article  Google Scholar 

  9. Loris JM, Perez-Vicente C, Tirado JL (2002) Electrochem Solid State Lett 5:A234

    Article  Google Scholar 

  10. Murugan AV, Murallganth T, Ferrelra PJ, Manthlram A (2009) Inorg Chem 48:946

    Article  CAS  Google Scholar 

  11. Santoro RP, Segal DJ, Newnham RE (1966) J Phys Chem Solids 27:1192

    Article  CAS  Google Scholar 

  12. Newnham RE (1975) Structure–Property Relations. Springer, Berlin

    Google Scholar 

  13. C Julien, GA Nazri (1994) Solid state batteries, materials design and optimization, Klumer, Boston

  14. W Weppner, Julien, Z Stoynov (Eds.) (2000) Materials for Lithium-Ion Batteries, NATO-ASI Series, vol. Ser. 3, Kluwer, Dordrecht 413

  15. Goodenough JB, Hong HYP, Kafalas JA (1976) Mater Res Bull 11:203

    Article  CAS  Google Scholar 

  16. Manthiram A, Goodenough JB (1987) J Solid State Chem 71:349

    Article  CAS  Google Scholar 

  17. K Rissouli (1996) Thesis, University of Chouaib Doukkali, El-Jadida, Morocco

  18. Rissouli K, Benkhouja K, Bettach M, Sadel A, Zahir M, Derory A, Drillon M (1998) Ann Chim Sci Mat 23:85

    Article  CAS  Google Scholar 

  19. Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Mater Sci Eng B98:185

    Article  CAS  Google Scholar 

  20. Gofii A, Lezama L, Barberis GE, Pizarro JL, Arriortua MI, Rojo T (1996) J Magn Magn Mater I64:351

    Google Scholar 

  21. Thilo E (1941) Naturwissenschaften 29:239–239

    Google Scholar 

  22. More SD, Meshram MN, Wankhede SP, Muthal PL, Dhopte SM, Moharil SV (2011) Phys B 406:1178–1181

    Article  CAS  Google Scholar 

  23. Lightfoot P, Pienkowski M, Brucea P, Abrahamd I (1991) J Mater Chem 1(6):1061–1063

    Article  CAS  Google Scholar 

  24. Delacourt C, Wurm C, Laffont L, Leriche JB, Masquelier C (2006) Solid State Ionics 177:333

    Article  CAS  Google Scholar 

  25. Ram M (2010) Phys B 405:602

    Article  CAS  Google Scholar 

  26. Papathanassiou AN, Grammatikakis J (1996) Phys Rev B 53:16252–16257

    Article  CAS  Google Scholar 

  27. Papathanassiou AN, Grammatikakis J (1997) Phys Rev B 56:8590–8598

    Article  CAS  Google Scholar 

  28. Papathanassiou AN, Grammatikakis J (2000) J Phys Chem Solids 61:1633–1638

    Article  CAS  Google Scholar 

  29. Subramanian MA, Subramanian R, Clearfield A (1986) Solid State Ionics 18:562

    Article  Google Scholar 

  30. Chopra S, Sharma S, Goel TC, Mendiratta RG (2003) Solid State Commun 127:299

    Article  CAS  Google Scholar 

  31. Macedo PB, Mognihan CT, Bose R (1972) Phys Chem Glasses 13:171

    CAS  Google Scholar 

  32. Ganguli M, Harish Bhat M, Rao KJ (1999) Phys Chem Glasses 40:297

    CAS  Google Scholar 

  33. Lanfredi S, Saia PS, Lebullenger R, Hernandes AC (2002) Solid State Ionics 146:329

    Article  CAS  Google Scholar 

  34. Ghosh S, Ghosh A (2002) Solid State Ionics 149:67

    Article  CAS  Google Scholar 

  35. Louati B, Guidara K, Gargouri M (2009) J Alloys Compd 472:347

    Article  CAS  Google Scholar 

  36. Gomes D, Algeria A (2001) J Non Cryst Solids 287:246

    Article  Google Scholar 

  37. Havriliak S, Negami S (1967) Polymer 8:161

    Article  CAS  Google Scholar 

  38. KL Ngain, GB Wrigh (1998) J. Non-Cryst Solids 235

  39. Alvarez F, Alegria A, Colmenero J (1993) J Phys Rev B 47:125

    Article  CAS  Google Scholar 

  40. Alvarez F, Alegria A, Colmenero J (1991) J Phys Rev B 44:7306

    Article  Google Scholar 

  41. Alegria A, Echevarria E, Goiyiandia L, Telleria I, Colmenero J (1995) Macromolecules 28:1516

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassem Louati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louati, B., Guidara, K. Dielectric relaxation and ionic conductivity studies of LiCaPO4 . Ionics 17, 633–640 (2011). https://doi.org/10.1007/s11581-011-0555-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-011-0555-1

Keywords

Navigation