Skip to main content

Advertisement

Log in

Delta radiomics: a systematic review

  • Computed Tomography
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Background

Radiomics can provide quantitative features from medical imaging that can be correlated with various biological features and clinical endpoints. Delta radiomics, on the other hand, consists in the analysis of feature variation at different acquisition time points, usually before and after therapy. The aim of this study was to provide a systematic review of the different delta radiomics approaches.

Methods

Eligible articles were searched in Embase, PubMed, and ScienceDirect using a search string that included free text and/or Medical Subject Headings (MeSH) with three key search terms: “radiomics”, “texture”, and “delta”. Studies were analysed using QUADAS-2 and the RQS tool.

Results

Forty-eight studies were finally included. The studies were divided into preclinical/methodological (five studies, 10.4%); rectal cancer (six studies, 12.5%); lung cancer (twelve studies, 25%); sarcoma (five studies, 10.4%); prostate cancer (three studies, 6.3%), head and neck cancer (six studies, 12.5%); gastrointestinal malignancies excluding rectum (seven studies, 14.6%), and other disease sites (four studies, 8.3%). The median RQS of all studies was 25% (mean 21% ± 12%), with 13 studies (30.2%) achieving a quality score < 10% and 22 studies (51.2%) < 25%.

Conclusions

Delta radiomics shows potential benefit for several clinical endpoints in oncology (differential diagnosis, prognosis and prediction of treatment response, and evaluation of side effects). Nevertheless, the studies included in this systematic review suffer from the bias of overall low quality, so that the conclusions are currently heterogeneous, not robust, and not replicable.

Further research with prospective and multicentre studies is needed for the clinical validation of delta radiomics approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bodalal Z, Trebeschi S, Beets-Tan R (2018) Radiomics: a critical step towards integrated healthcare. Insights Imaging 9(6):911–914. https://doi.org/10.1007/s13244-018-0669-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ciolina M, Vinci V, Villani L, Gigli S, Saldari M, Panici PB, Perniola G, Laghi A, Catalano C, Manganaro L (2019) Texture analysis versus conventional MRI prognostic factors in predicting tumor response to neoadjuvant chemotherapy in patients with locally advanced cancer of the uterine cervix. Radiol Med 124(10):955–964. https://doi.org/10.1007/s11547-019-01055-3

    Article  PubMed  Google Scholar 

  3. Nardone V, Tini P, Croci S, Carbone SF, Sebaste L, Carfagno T, Battaglia G, Pastina P, Rubino G, Mazzei MA, Pirtoli L (2018) 3D bone texture analysis as a potential predictor of radiation-induced insufficiency fractures. Quant Imaging Med Surg 8(1):14–24. https://doi.org/10.21037/qims.2018.02.01

    Article  PubMed  PubMed Central  Google Scholar 

  4. De Piano F, Buscarino V, Maresca D, Maisonneuve P, Aletti G, Lazzari R, Vavassori A, Bellomi M, Rizzo S (2019) Do DWI and quantitative DCE perfusion MR have a prognostic value in high-grade serous ovarian cancer? Cancers (Basel) 124(12):1315–1323. https://doi.org/10.1007/s11547-019-01075-z

    Article  Google Scholar 

  5. Crombé A, Kind M, Ray-Coquard I, Isambert N, Chevreau C, André T, Lebbe C, Cesne AL, Bompas E, Piperno-Neumann S, Saada E, Bouhamama A, Blay JY, Italiano A (2020) Progressive desmoid tumor: radiomics compared with conventional response criteria for predicting progression during systemic therapy-A multicenter study by the french sarcoma group. AJR Am J Roentgenol 215(6):1539–1548. https://doi.org/10.2214/ajr.19.22635

    Article  PubMed  Google Scholar 

  6. Gao Y, Kalbasi A, Hsu W, Ruan D, Fu J, Shao J, Cao M, Wang C, Eilber FC, Bernthal N, Bukata S, Dry SM, Nelson SD, Kamrava M, Lewis J, Low DA, Steinberg M, Hu P, Yang Y (2020) Treatment effect prediction for sarcoma patients treated with preoperative radiotherapy using radiomics features from longitudinal diffusion-weighted MRIs. Phys Med Biol 65(17):175006. https://doi.org/10.1088/1361-6560/ab9e58

    Article  PubMed  Google Scholar 

  7. Lorenz JW, Schott D, Rein L, Mostafaei F, Noid G, Lawton C, Bedi M, Li XA, Schultz CJ, Paulson E, Hall WA (2019) Serial T2-weighted magnetic resonance images acquired on a 1.5 tesla magnetic resonance linear accelerator reveal radiomic feature variation in organs at risk: an exploratory analysis of novel metrics of tissue response in prostate cancer. Cureus 11(4):e4510. https://doi.org/10.7759/cureus.4510

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mazzei MA, Nardone V, Di Giacomo L, Bagnacci G, Gentili F, Tini P, Marrelli D, Volterrani L (2018) The role of delta radiomics in gastric cancer. Quant Imaging Med Surg 8(7):719–721. https://doi.org/10.21037/qims.2018.07.08

    Article  PubMed  PubMed Central  Google Scholar 

  9. Filograna L, Lenkowicz J, Cellini F, Dinapoli N, Manfrida S, Magarelli N, Leone A, Colosimo C, Valentini V (2019) Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: a feasibility study. Radiol Med 124(1):50–57. https://doi.org/10.1007/s11547-018-0935-y

    Article  PubMed  Google Scholar 

  10. Boldrini L, Bibault JE, Masciocchi C, Shen Y, Bittner MI (2019) Deep learning: a review for the radiation oncologist. Front Oncol 9:977. https://doi.org/10.3389/fonc.2019.00977

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reginelli A, Nardone V, Giacobbe G, Belfiore MP, Grassi R, Schettino F, Del Canto M, Grassi R, Cappabianca S (2021) Radiomics as a new frontier of imaging for cancer prognosis: a narrative review. Diagnostics 11(10):1796

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nardone V, Boldrini L (2021) Radiomics in the setting of neoadjuvant radiotherapy: a new approach for tailored treatment. Cancers (Basel) 13(14):3590. https://doi.org/10.3390/cancers13143590

    Article  PubMed  PubMed Central  Google Scholar 

  13. Petralia G, Padhani AR, Pricolo P, Zugni F, Martinetti M, Summers PE (2019) Whole-body magnetic resonance imaging (WB-MRI) in oncology: recommendations and key uses. Radiol Med 124(3):218–233. https://doi.org/10.1007/s11547-018-0955-7

    Article  PubMed  Google Scholar 

  14. Ravanelli M, Agazzi GM, Tononcelli E, Roca E, Cabassa P, Baiocchi G, Berruti A, Maroldi R, Farina D (2019) Texture features of colorectal liver metastases on pretreatment contrast-enhanced CT may predict response and prognosis in patients treated with bevacizumab-containing chemotherapy: a pilot study including comparison with standard chemotherapy. Radiol Med 124(9):877–886. https://doi.org/10.1007/s11547-019-01046-4

    Article  PubMed  Google Scholar 

  15. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue R, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762. https://doi.org/10.1038/nrclinonc.2017.141

    Article  PubMed  Google Scholar 

  16. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM, Group Q (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

    Article  PubMed  Google Scholar 

  17. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. https://doi.org/10.1136/bmj.b2700

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chang Y, Lafata K, Sun W, Wang C, Chang Z, Kirkpatrick JP, Yin FF (2019) An investigation of machine learning methods in delta-radiomics feature analysis. PLoS ONE 14(12):e0226348. https://doi.org/10.1371/journal.pone.0226348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Plautz TE, Zheng C, Noid G, Li XA (2019) Time stability of delta-radiomics features and the impact on patient analysis in longitudinal CT images. Med Phys 46(4):1663–1676. https://doi.org/10.1002/mp.13395

    Article  PubMed  Google Scholar 

  20. van Timmeren JE, Leijenaar RTH, van Elmpt W, Reymen B, Lambin P (2017) Feature selection methodology for longitudinal cone-beam CT radiomics. Acta Oncol 56(11):1537–1543. https://doi.org/10.1080/0284186x.2017.1350285

    Article  PubMed  Google Scholar 

  21. Wong OL, Yuan J, Zhou Y, Yu SK, Cheung KY (2021) Longitudinal acquisition repeatability of MRI radiomics features: an ACR MRI phantom study on two MRI scanners using a 3D T1W TSE sequence. Med Phys 48(3):1239–1249. https://doi.org/10.1002/mp.14686

    Article  PubMed  Google Scholar 

  22. Nardone V, Reginelli A, Guida C, Belfiore MP, Biondi M, Mormile M, Banci Buonamici F, Di Giorgio E, Spadafora M, Tini P, Grassi R, Pirtoli L, Correale P, Cappabianca S, Grassi R (2020) Delta-radiomics increases multicentre reproducibility: a phantom study. Med Oncol 37(5):38. https://doi.org/10.1007/s12032-020-01359-9

    Article  PubMed  Google Scholar 

  23. Kothari G, Korte J, Lehrer EJ, Zaorsky NG, Lazarakis S, Kron T, Hardcastle N, Siva S (2021) A systematic review and meta-analysis of the prognostic value of radiomics based models in non-small cell lung cancer treated with curative radiotherapy. Radiother Oncol 155:188–203. https://doi.org/10.1016/j.radonc.2020.10.023

    Article  CAS  PubMed  Google Scholar 

  24. Wong CW, Chaudhry A (2020) Radiogenomics of lung cancer. J Thorac Dis 12(9):5104–5109. https://doi.org/10.21037/jtd-2019-pitd-10

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fave X, Zhang L, Yang J (2017) Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep 7(1):588. https://doi.org/10.1038/s41598-017-00665-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi L, Rong Y, Daly M, Dyer B, Benedict S, Qiu J, Yamamoto T (2020) Cone-beam computed tomography-based delta-radiomics for early response assessment in radiotherapy for locally advanced lung cancer. Phys Med Biol 65(1):015009. https://doi.org/10.1088/1361-6560/ab3247

    Article  CAS  PubMed  Google Scholar 

  27. Khorrami M, Prasanna P, Gupta A (2020) Changes in CT radiomic features associated with lymphocyte distribution predict overall survival and response to immunotherapy in non-small cell lung cancer. Cancer Immunol Res 8(1):108–119. https://doi.org/10.1158/2326-6066.cir-19-0476

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Wu M, Zhang Y, Luo Y, He S, Wang Y, Chen F, Liu Y, Yang Q, Li Y, Wei H, Zhang H, Jin C, Lu N, Li W, Wang S, Guo Y, Ye Z (2021) Imaging biomarkers to predict and evaluate the effectiveness of immunotherapy in advanced non-small-cell lung cancer. Front Oncol 11:657615. https://doi.org/10.3389/fonc.2021.657615

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carles M, Fechter T (2021) FDG-PET radiomics for response monitoring in non-small-cell lung cancer treated with radiation therapy. Cancers (Basel) 13(4):814. https://doi.org/10.3390/cancers13040814

    Article  CAS  Google Scholar 

  30. Lee SH, Kao GD, Feigenberg SJ, Dorsey JF, Frick MA, Jean-Baptiste S, Uche CZ, Cengel KA, Levin WP, Berman AT, Aggarwal C, Fan Y, Xiao Y (2021) Multiblock discriminant analysis of integrative (18)F-FDG-PET/CT radiomics for predicting circulating tumor cells in early-stage non-small cell lung cancer treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 110(5):1451–1465. https://doi.org/10.1016/j.ijrobp.2021.02.030

    Article  PubMed  Google Scholar 

  31. Cherezov D, Hawkins SH, Goldgof DB, Hall LO, Liu Y, Li Q, Balagurunathan Y, Gillies RJ, Schabath MB (2018) Delta radiomic features improve prediction for lung cancer incidence: a nested case-control analysis of the national lung screening trial. Cancer Med 7(12):6340–6356. https://doi.org/10.1002/cam4.1852

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alahmari SS, Cherezov D, Goldgof D, Hall L, Gillies RJ, Schabath MB (2018) Delta radiomics improves pulmonary nodule malignancy prediction in lung cancer screening. IEEE Access 6:77796–77806. https://doi.org/10.1109/access.2018.2884126

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ma Y, Ma W, Xu X, Cao F (2020) How does the delta-radiomics better differentiate pre-invasive ggns from invasive GGNs? Front Oncol 10:1017. https://doi.org/10.3389/fonc.2020.01017

    Article  PubMed  PubMed Central  Google Scholar 

  34. Huang Q, Lu L, Dercle L, Lichtenstein P, Li Y, Yin Q, Zong M, Schwartz L, Zhao B (2018) Interobserver variability in tumor contouring affects the use of radiomics to predict mutational status. J Med Imaging (Bellingham) 5(1):011005. https://doi.org/10.1117/1.jmi.5.1.011005

    Article  Google Scholar 

  35. Lu L, Sun SH (2021) Identifying robust radiomics features for lung cancer by using in-vivo and phantom lung lesions. Tomography 7(1):55–64. https://doi.org/10.3390/tomography7010005

    Article  PubMed  PubMed Central  Google Scholar 

  36. Spohn SKB, Bettermann AS, Bamberg F, Benndorf M, Mix M, Nicolay NH, Fechter T, Hölscher T, Grosu R, Chiti A, Grosu AL, Zamboglou C (2021) Radiomics in prostate cancer imaging for a personalized treatment approach - current aspects of methodology and a systematic review on validated studies. Theranostics 11(16):8027–8042. https://doi.org/10.7150/thno.61207

    Article  PubMed  PubMed Central  Google Scholar 

  37. Beyhan M, Sade R, Koc E, Adanur S, Kantarci M (2019) The evaluation of prostate lesions with IVIM DWI and MR perfusion parameters at 3T MRI. Radiol Med 124(2):87–93. https://doi.org/10.1007/s11547-018-0930-3

    Article  PubMed  Google Scholar 

  38. Delgadillo R, Ford JC, Abramowitz MC, Dal Pra A, Pollack A, Stoyanova R (2020) The role of radiomics in prostate cancer radiotherapy. Strahlenther Onkol 196(10):900–912. https://doi.org/10.1007/s00066-020-01679-9

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sushentsev N, Rundo L, Blyuss O, Nazarenko T, Suvorov A, Gnanapragasam VJ, Sala E, Barrett T (2021) Comparative performance of MRI-derived PRECISE scores and delta-radiomics models for the prediction of prostate cancer progression in patients on active surveillance. Eur Radiol. https://doi.org/10.1007/s00330-021-08151-x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Abdollahi H, Mofid B, Shiri I, Razzaghdoust A, Saadipoor A, Mahdavi A, Galandooz HM, Mahdavi SR (2019) Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. Radiol Med 124(6):555–567. https://doi.org/10.1007/s11547-018-0966-4

    Article  PubMed  Google Scholar 

  41. Ht Hu, Qy S, Sl C, Li B, Feng St Xu, Ej LX, Jy L, Xie Xy LuMd, Kuang M, Jx S, Wang W (2020) CT-based radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: technical reproducibility of acquisition and scanners. Radiol Med 125(8):697–705. https://doi.org/10.1007/s11547-020-01174-2

    Article  Google Scholar 

  42. Zhang L, Kang L, Li G, Zhang X, Ren J, Shi Z, Li J, Yu S (2020) Computed tomography-based radiomics model for discriminating the risk stratification of gastrointestinal stromal tumors. Radiol Med 125(5):465–473. https://doi.org/10.1007/s11547-020-01138-6

    Article  PubMed  Google Scholar 

  43. Nasief H, Zheng C (2019) A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer. NPJ Precis Oncol 3:25. https://doi.org/10.1038/s41698-019-0096-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nasief H, Hall W, Zheng C, Tsai S, Wang L, Erickson B, Li XA (2019) Improving treatment response prediction for chemoradiation therapy of pancreatic cancer using a combination of delta-radiomics and the clinical biomarker CA19-9. Front Oncol 9:1464. https://doi.org/10.3389/fonc.2019.01464

    Article  PubMed  Google Scholar 

  45. Cusumano D, Boldrini L (2021) Delta radiomics analysis for local control prediction in pancreatic cancer patients treated using magnetic resonance guided radiotherapy. Diagnostics (Basel). https://doi.org/10.3390/diagnostics11010072

    Article  Google Scholar 

  46. Cheng SH, Cheng YJ, Jin ZY, Xue HD (2019) Unresectable pancreatic ductal adenocarcinoma: role of CT quantitative imaging biomarkers for predicting outcomes of patients treated with chemotherapy. Eur J Radiol 113:188–197. https://doi.org/10.1016/j.ejrad.2019.02.009

    Article  PubMed  Google Scholar 

  47. Mazzei MA, Di Giacomo L, Bagnacci G, Nardone V, Gentili F, Lucii G, Tini P, Marrelli D, Morgagni P, Mura G, Baiocchi GL, Pittiani F, Volterrani L, Roviello F (2021) Delta-radiomics and response to neoadjuvant treatment in locally advanced gastric cancer-a multicenter study of GIRCG (Italian Research Group for Gastric Cancer). Quant Imaging Med Surg 11(6):2376–2387. https://doi.org/10.21037/qims-20-683

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tan JW, Wang L, Chen Y, Xi W, Ji J, Wang L, Xu X, Zou LK, Feng JX, Zhang J, Zhang H (2020) Predicting chemotherapeutic response for far-advanced gastric cancer by radiomics with deep learning semi-automatic segmentation. J Cancer 11(24):7224–7236. https://doi.org/10.7150/jca.46704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang L, Gao Z, Li C, Sun L, Li J, Yu J, Meng X (2021) Computed tomography-based delta-radiomics analysis for discriminating radiation pneumonitis in patients with esophageal cancer after radiation therapy. Int J Radiat Oncol Biol Phys 111(2):443–455. https://doi.org/10.1016/j.ijrobp.2021.04.047

    Article  PubMed  Google Scholar 

  50. Cui Y, Liu H, Ren J, Du X, Xin L, Li D, Yang X, Wang D (2020) Development and validation of a MRI-based radiomics signature for prediction of KRAS mutation in rectal cancer. Eur Radiol 30(4):1948–1958. https://doi.org/10.1007/s00330-019-06572-3

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Zhang FJ, Zhao XX, Yang Y, Liang CY, Feng LL, Wan XB, Ding Y, Zhang YW (2021) Development of a joint prediction model based on both the radiomics and clinical factors for predicting the tumor response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Cancer Manag Res 13:3235–3246. https://doi.org/10.2147/CMAR.S295317

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ciolina M, Caruso D, De Santis D, Zerunian M, Rengo M, Alfieri N, Musio D, De Felice F, Ciardi A, Tombolini V, Laghi A (2019) Dynamic contrast-enhanced magnetic resonance imaging in locally advanced rectal cancer: role of perfusion parameters in the assessment of response to treatment. Radiol Med 124(5):331–338. https://doi.org/10.1007/s11547-018-0978-0

    Article  PubMed  Google Scholar 

  53. Crimì F, Capelli G, Spolverato G, Bao QR, Florio A, Milite Rossi S, Cecchin D, Albertoni L, Campi C, Pucciarelli S, Stramare R (2020) MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). Radiol Med 125(12):1216–1224. https://doi.org/10.1007/s11547-020-01215-w

    Article  PubMed  Google Scholar 

  54. Chan AK, Wong A, Jenken D, Heine J, Buie D, Johnson D (2005) Posttreatment TNM staging is a prognostic indicator of survival and recurrence in tethered or fixed rectal carcinoma after preoperative chemotherapy and radiotherapy. Int J Radiat Oncol Biol Phys 61(3):665–677. https://doi.org/10.1016/j.ijrobp.2004.06.206

    Article  PubMed  Google Scholar 

  55. Shayesteh S, Nazari M, Salahshour A, Sandoughdaran S, Hajianfar G, Khateri M, Yaghobi Joybari A, Jozian F, Fatehi Feyzabad SH, Arabi H, Shiri I, Zaidi H (2021) Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer. Med Phys. https://doi.org/10.1002/mp.14896

    Article  PubMed  Google Scholar 

  56. Wan L, Peng W, Zou S, Ye F, Geng Y, Ouyang H, Zhao X, Zhang H (2020) MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Acad Radiol. https://doi.org/10.1016/j.acra.2020.10.026

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jeon SH, Song C, Chie EK, Kim B, Kim YH, Chang W, Lee YJ, Chung JH, Chung JB, Lee KW, Kang SB, Kim JS (2019) Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer. Radiat Oncol 14(1):43. https://doi.org/10.1186/s13014-019-1246-8

    Article  PubMed  PubMed Central  Google Scholar 

  58. Boldrini L, Cusumano D, Chiloiro G, Casà C, Masciocchi C, Lenkowicz J, Cellini F, Dinapoli N, Azario L, Teodoli S, Gambacorta MA, De Spirito M, Valentini V (2019) Delta radiomics for rectal cancer response prediction with hybrid 035 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med 124(2):145–153. https://doi.org/10.1007/s11547-018-0951-y

    Article  PubMed  Google Scholar 

  59. Cusumano D, Boldrini L, Yadav P, Yu G, Musurunu B, Chiloiro G, Piras A, Lenkowicz J, Placidi L, Romano A, De Luca V, Votta C, Barbaro B, Gambacorta MA, Bassetti MF, Yang Y, Indovina L, Valentini V (2021) Delta radiomics for rectal cancer response prediction using low field magnetic resonance guided radiotherapy: an external validation. Phys Med 84:186–191. https://doi.org/10.1016/j.ejmp.2021.03.038

    Article  PubMed  Google Scholar 

  60. Chiloiro G, Rodriguez-Carnero P, Lenkowicz J, Casà C, Masciocchi C, Boldrini L, Cusumano D, Dinapoli N, Meldolesi E, Carano D, Damiani A, Barbaro B, Manfredi R, Valentini V, Gambacorta MA (2020) Delta radiomics can predict distant metastasis in locally advanced rectal cancer: the challenge to personalize the cure. Front Oncol 10:595012–595012. https://doi.org/10.3389/fonc.2020.595012

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bruno F, Arrigoni F, Mariani S, Splendiani A, Di Cesare E, Masciocchi C, Barile A (2019) Advanced magnetic resonance imaging (MRI) of soft tissue tumors: techniques and applications. Radiol Med 124(4):243–252. https://doi.org/10.1007/s11547-019-01035-7

    Article  PubMed  Google Scholar 

  62. Badalamenti G, Messina C, De Luca I, Musso E, Casarin A, Incorvaia L (2019) Soft tissue sarcomas in the precision medicine era: new advances in clinical practice and future perspectives. Radiol Med 124(4):259–265. https://doi.org/10.1007/s11547-018-0883-6

    Article  PubMed  Google Scholar 

  63. Lin P, Yang PF, Chen S, Shao YY, Xu L, Wu Y, Teng W, Zhou XZ, Li BH, Luo C, Xu LM, Huang M, Niu TY, Ye ZM (2020) A delta-radiomics model for preoperative evaluation of neoadjuvant chemotherapy response in high-grade osteosarcoma. Cancer Imaging: Off Publ Int Cancer Imaging Soc 20(1):7. https://doi.org/10.1186/s40644-019-0283-8

    Article  Google Scholar 

  64. Crombe A, Perier C, Kind M, De Senneville BD, Le Loarer F, Italiano A, Buy X, Saut O (2019) T2 -based MRI delta-radiomics improve response prediction in soft-tissue sarcomas treated by neoadjuvant chemotherapy. J Magn Reson Imaging 50(2):497–510. https://doi.org/10.1002/jmri.26589

    Article  PubMed  Google Scholar 

  65. Crombe A, Sitbon M, Stoeckle E, Italiano A, Buy X, Le Loarer F, Kind M (2020) Magnetic resonance imaging assessment of chemotherapy-related adipocytic maturation in myxoid/round cell liposarcomas: specificity and prognostic value. Br J Radiol 93(1110):20190794. https://doi.org/10.1259/bjr.20190794

    Article  PubMed  Google Scholar 

  66. Desideri I, Loi M, Francolini G, Becherini C, Livi L, Bonomo P (2020) Application of radiomics for the prediction of radiation-induced toxicity in the IMRT Era: current state-of-the-art. Front Oncol 10:1708. https://doi.org/10.3389/fonc.2020.01708

    Article  PubMed  PubMed Central  Google Scholar 

  67. Francolini G, Desideri I, Stocchi G, Salvestrini V, Ciccone LP, Garlatti P, Loi M, Livi L (2020) Artificial intelligence in radiotherapy: state of the art and future directions. Med Oncol 37(6):50. https://doi.org/10.1007/s12032-020-01374-w

    Article  PubMed  Google Scholar 

  68. Liu Y, Shi H, Huang S, Chen X, Zhou H, Chang H, Xia Y, Wang G, Yang X (2019) Early prediction of acute xerostomia during radiation therapy for nasopharyngeal cancer based on delta radiomics from CT images. Quant Imaging Med Surg 9(7):1288–1302. https://doi.org/10.21037/qims.2019.07.08

    Article  PubMed  PubMed Central  Google Scholar 

  69. van Dijk LV, Brouwer CL, van der Laan HP, Burgerhof JGM, Langendijk JA, Steenbakkers R, Sijtsema NM (2017) Geometric image biomarker changes of the parotid gland are associated with late xerostomia. Int J Radiat Oncol Biol Phys 99(5):1101–1110. https://doi.org/10.1016/j.ijrobp.2017.08.003

    Article  PubMed  Google Scholar 

  70. van Dijk LV, Langendijk JA, Zhai TT, Vedelaar TA, Noordzij W, Steenbakkers R, Sijtsema NM (2019) Delta-radiomics features during radiotherapy improve the prediction of late xerostomia. Sci Rep 9(1):12483. https://doi.org/10.1038/s41598-019-48184-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barua S, Elhalawani H, Volpe S, Al Feghali KA, Yang P, Ng SP, Elgohari B, Granberry RC, Mackin DS, Gunn GB, Hutcheson KA, Chambers MS, Court LE, Mohamed ASR, Fuller CD, Lai SY, Rao A (2021) Computed tomography radiomics kinetics as early imaging correlates of osteoradionecrosis in oropharyngeal cancer patients. Front Artif Intell 4:618469. https://doi.org/10.3389/frai.2021.618469

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fatima K, Dasgupta A, DiCenzo D, Kolios C, Quiaoit K, Saifuddin M, Sandhu M, Bhardwaj D, Karam I, Poon I, Husain Z, Sannachi L, Czarnota GJ (2021) Ultrasound delta-radiomics during radiotherapy to predict recurrence in patients with head and neck squamous cell carcinoma. Clin Transl Radiat Oncol 28:62–70. https://doi.org/10.1016/j.ctro.2021.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tran WT, Suraweera H (2020) Quantitative ultrasound delta-radiomics during radiotherapy for monitoring treatment responses in head and neck malignancies. Future Sci OA 6(9):Fso624. https://doi.org/10.2144/fsoa-2020-0073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kirienko M, Ninatti G (2020) Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinum masses as thymic neoplasms versus lymphomas. Radiol Med 125(10):951–960. https://doi.org/10.1007/s11547-020-01188-w

    Article  PubMed  Google Scholar 

  75. Nazari M, Shiri I, Hajianfar G, Oveisi N, Abdollahi H, Deevband MR, Oveisi M, Zaidi H (2020) Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Radiol Med 125(8):754–762. https://doi.org/10.1007/s11547-020-01169-z

    Article  PubMed  Google Scholar 

  76. Zhang Y, Zhu Y, Zhang K, Liu Y, Cui J, Tao J, Wang Y, Wang S (2020) Invasive ductal breast cancer: preoperative predict Ki-67 index based on radiomics of ADC maps. Radiol Med 125(2):109–116. https://doi.org/10.1007/s11547-019-01100-1

    Article  PubMed  Google Scholar 

  77. Wang ZL, Mao LL, Zhou ZG, Si L, Zhu HT, Chen X, Zhou MJ, Sun YS, Guo J (2020) Pilot study of CT-based radiomics model for early evaluation of response to immunotherapy in patients with metastatic melanoma. Front Oncol 10:1524. https://doi.org/10.3389/fonc.2020.01524

    Article  PubMed  PubMed Central  Google Scholar 

  78. Basler L, Gabryś HS (2020) Radiomics, tumor volume, and blood biomarkers for early prediction of pseudoprogression in patients with metastatic melanoma treated with immune checkpoint inhibition. Clin Cancer Res 26(16):4414–4425. https://doi.org/10.1158/1078-0432.ccr-20-0020

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Z, Yang J (2018) A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images. Eur Radiol 28(6):2255–2263. https://doi.org/10.1007/s00330-017-5154-8

    Article  PubMed  Google Scholar 

  80. Fan M, Chen H, You C, Liu L, Gu Y, Peng W, Gao X, Li L (2021) Radiomics of tumor heterogeneity in longitudinal dynamic contrast-enhanced magnetic resonance imaging for predicting response to neoadjuvant chemotherapy in breast cancer. Front Mol Biosci 8:622219. https://doi.org/10.3389/fmolb.2021.622219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Collins GS, Reitsma JB, Altman DG, Moons KG (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594. https://doi.org/10.1136/bmj.g7594

    Article  PubMed  Google Scholar 

  82. Wang H, Zhou Y, Li L, Hou W, Ma X, Tian R (2020) Current status and quality of radiomics studies in lymphoma: a systematic review. Eur Radiol 30(11):6228–6240. https://doi.org/10.1007/s00330-020-06927-1

    Article  PubMed  Google Scholar 

  83. Sanduleanu S, Woodruff HC, de Jong EEC, van Timmeren JE, Jochems A, Dubois L, Lambin P (2018) Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother Oncol 127(3):349–360. https://doi.org/10.1016/j.radonc.2018.03.033

    Article  PubMed  Google Scholar 

  84. Park JE, Kim D, Kim HS (2020) Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol 30(1):523–536. https://doi.org/10.1007/s00330-019-06360-z

    Article  PubMed  Google Scholar 

  85. Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D, Hindié E, Martineau A, Pradier O, Hustinx R, Perdrisot R, Guillevin R, El Naqa I, Visvikis D (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56(1):38–44. https://doi.org/10.2967/jnumed.114.144055

    Article  CAS  PubMed  Google Scholar 

  86. Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55(1):37–42. https://doi.org/10.2967/jnumed.112.116715

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Reginelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nardone, V., Reginelli, A., Grassi, R. et al. Delta radiomics: a systematic review. Radiol med 126, 1571–1583 (2021). https://doi.org/10.1007/s11547-021-01436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-021-01436-7

Keywords

Navigation