Skip to main content
Log in

Development of Near-Infrared Reflection Spectroscopy Calibrations for Crude Protein and Dry Matter Content in Fresh and Dried Potato Tuber Samples

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

Potato tuber protein could be a valuable alternative in human and animal nutrition due to its adequate nutritional value and competitive protein yield per hectare. In this study, crude protein content (CPC) and dry matter content (DMC) of potato tuber samples (n = 117) prepared in different ways (fresh and dried samples) were analysed to develop practicable near-infrared reflection spectroscopy (NIRS) calibrations for CPC and DMC as well as for two different NIRS devices. The investigated potato samples showed a DMC between 14.1 and 35.2% and a CPC in the dry matter (DM) to vary between 4.93 and 12.31%, while CPC per fresh matter (FM) was between 1.43 and 2.87%. For dried potato flour, a NIRS calibration for CPC with a coefficient of determination of cross validation (R 2CV) of 0.936 was developed and considered to be accurate for the prediction of this trait in potato tubers. Additionally, a NIRS calibration for DMC of fresh potatoes was developed with an R 2CV value of 0.939. The newly developed NIRS calibration for CPC on fresh potato samples is useful for the selection of potato cultivars with comparatively high or low tuber protein content and demonstrates that a fast, simple, and cost-saving sample preparation leads to comparably adequate NIRS calibrations as those described in the literature using more extensive sample preparation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CPC:

Crude protein content

CS:

Calibration set

CV:

Coefficient of variation

DM:

Dry matter

DMC:

Dry matter content

FM:

Fresh matter

KS:

Kolmogorov-Smirnov significance

MPLS:

Modified partial least squares method

N:

Nitrogen

NIRS:

Near-infrared reflection spectroscopy

nT:

Number of terms

PCA:

Principle component analysis

R:

Reflection

R 2 :

Coefficient of determination

R 2CV:

Coefficient of determination of cross validation

SD:

Standard deviation

SEC:

Standard error of calibration

SECV:

Standard error of cross validation

SEL:

Standard error of the laboratory

SEP:

Standard error of prediction

SNV:

Standard normal variate mode

SSD:

Sum of squared deviations

References

  • Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near infrared diffuse reflectance spectra. Appl Spectrosc 43:772–777

    Article  CAS  Google Scholar 

  • Bauw G, Nielsen HV, Emmersen J, Nielsen KL, Jørgensen M, Welinder KG (2006) Patatins, Kunitz protease inhibitors and other major proteins in tuber of potato cv. Kuras. FEBS J 273:3569–3584

    Article  CAS  PubMed  Google Scholar 

  • Bayés A, de la Vega MR, Vendrell J, Aviles FX, Jongsma MA, Beekwilder J (2006) Response of the digestive system of Helicoverpa zea to ingestion of potato carboxypeptidase inhibitor and characterization of an uninhibited carboxypeptidase B. Insect Biochem Mol Biol 36:654–664

    Article  PubMed  Google Scholar 

  • Bengtsson L (1985) Some experiences of using different analytical methods in screening for oil and protein content in rapeseed. Fette Seifen Anstrichmittel 87:262–265

    Article  CAS  Google Scholar 

  • Birch PRJ, Bryan G, Fenton B, Gilroy EM, Hein I, Jones JT, Prashar A, Taylor MA, Torrance L, Toth IK (2012) Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Sec 4:477–508

    Article  Google Scholar 

  • Brunt K, Drost WC (2010) Design, construction and testing of an automated NIR in-line analysis system for potatoes Part I: Off-line NIR feasibility study for the characterization of potato composition. Potato Res 53:25–39

    Article  CAS  Google Scholar 

  • Buckee GK (1994) Determination of total nitrogen in Barley, Malt and Beer by Kjeldahl procedures and the Dumas combustion method. J Institute Brewing 57–64

  • Chick H, Cutting ME (1943) Nutritive value of nitrogenous substances in the potato. Lancet 245:667–669

    Article  Google Scholar 

  • Dumas J (1826) Memoire sur quelques Points de la Théorie atomistique. J Ch

  • Eppendorfer WH, Eggum BO, Bille SW (1979) Nutritive value of potato crude protein as influenced by manuring and amino acid composition. J Sci Food Agric 30:361–368

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Ahumada E, Garrido-Varo A, Guerrero-Ginel JE, Wubbels A, van der Sluis C, van der Meer JM (2006) Understanding factors affecting near infrared analysis of potato constituents. J Near Infrared Spectrosc 14:27–35

    Article  Google Scholar 

  • Ghaly AE, Alkoaik FN (2010) Extraction of protein from common plant leaves for use as human food. Am J Appl Sci 7(3):331–342

    Article  CAS  Google Scholar 

  • Haase NU (2004) Estimation of dry matter and starch concentration in potatoes by determination of under-water weight and near infrared spectroscopy. Potato Res 46:117–127

    Article  Google Scholar 

  • Haase NU (2006) Rapid estimation of potato tuber quality by near-infrared spectroscopy. Starch 58:268–273

    Article  CAS  Google Scholar 

  • Hartmann R, Büning-Pfaue H (1998) NIR determination of potato constituents. Potato Res 41:327–334

    Article  CAS  Google Scholar 

  • Haynes KG, Yencho GC, Clough ME, Henninger MR, Sterrett SB (2012) Genetic variation for potato tuber micronutrient content and implications for biofortification of potatoes to reduce micronutrient malnutrition. Am J Pot Res 89:192–198

    Article  CAS  Google Scholar 

  • Hermosa MR, Turra D, Fogliano V, Monte E, Lorito M (2006) Identification and characterization of potato protease inhibitors able to inhibit pathogenicity and growth of Botrytis cinerea. Physiol Mol Plant Pathol 68:138–148

    Article  CAS  Google Scholar 

  • Hijmans RJ (2001) Global distribution of the potato crop. Am J Potato Res 78:403–412

    Article  Google Scholar 

  • Höfgen R, Willmitzer L (1990) Biochemical and genetic analysis of different Patatin isoforms expressed in various organs of potato (Solanum tuberosum). Plant Sci 66:221–230

    Article  Google Scholar 

  • Hughes BP (1958) The amino acid composition of potato protein and of cooked potato. Br J Nutr 12:188–195

    Article  CAS  PubMed  Google Scholar 

  • Janssen J, Laatz W (2007) Statistische Datenanalyse mit SPSS für Windows. Vol. 6. Springer-Verlag, Berlin Heidelberg, Germany, ISBN: 978-3-540-72977-8

  • Jørgensen M, Bauw G, Welinder KG (2006) Molecular properties and activities of tuber proteins from starch potato cv. Kuras. J Agric Food Chem 54:9389–9397

    Article  PubMed  Google Scholar 

  • Kapoor AC, Desborough SL, Li PH (1975) Potato tuber proteins and their nutritional quality. Potato Res 18:469–478

    Article  CAS  Google Scholar 

  • Kerr CA, Goodband RD, Smith JW, Musser RE, Bergstrom JR, Nessmith WB, Tokach MD, Nelssen JL (1998) Evaluation of potato proteins on the growth performance of early-weaned pigs. J Anim Sci 76:3024–3033

    Article  CAS  PubMed  Google Scholar 

  • Koester S (1989) Methodische Untersuchungen zum Einsatz der Nahinfrarot-Reflektionsspektroskopie (NIRS) in der Körnerrapszüchtung. Landbauforschung Völkenrode, Sonderheft 98

  • Kolmogorov AN (1933) Sulla determinazione empirica di una legge di distribuzine. Giornale dell’ Instituto Italiano degli Attuari 4:83–91

    Google Scholar 

  • Lebot V, Ndiaye A, Malapa R (2011) Phenotypic characterization of sweet potato [Ipomoea batatas (L.) Lam.] genotypes in relation to prediction of chemical quality constituents by NIRS equations. Plant Breed 130:457–463

    Article  CAS  Google Scholar 

  • López A, Arazuri S, García I, Mangado J, Jarén C (2013) A review of the application of near-infrared spectroscopy for the analysis of potatoes. J Agric Food Chem 61:5413–5424

    Article  PubMed  Google Scholar 

  • Lu W, Yu M, Bai Y, Li W, Xu X (2012) Crude protein content in diploid hybrid potato clones of Solanum phureja - S stenotomum. Potato Res 55:315–322

    Article  CAS  Google Scholar 

  • Matissek R, Steiner G, Fischer M (2014) Lebensmittelanalytik.Vol. 5. Springer-Verlag, Berlin Heidelberg, Germany, ISBN: 978-3-642-34828-0

  • Mossé J (1990) Nitrogen to protein conversion factor for ten cereals and six legumes or oilseeds. A reappraisal of its definition and determination. Variation according to species and to seed protein content. J Agric Food Chem 38:18–24

    Article  Google Scholar 

  • Organization For Economic Co-Operation And Development (OECD) (2002) Consensus document on compositional considerations for new varieties of potatoes: key food and feed nutrients anti-nutrients and toxicants. Series on the Safety Novel Foods and Feeds, No. 4 ENV/JM/MONO(2002)5

  • Owusu-Apenten RK (2002) Food protein analysis: quantitative effects on processing. Vol. 118. Marcel Dekker, Inc., New York, USA, ISBN: 0-8247-0684-6

  • Pots AM, Gruppen H, van Diepenbreek R, van der Lee JJ, van Boekel MAJS, Wijngaards G, Voragen AGJ (1999) The effect of storage of whole potatoes of three cultivars on the patatin and protease inhibitor content; a study using capillary electrophoresis and MALDI-TOF mass spectrometry. J Sci Food Agric 79:1557–1564

    Article  CAS  Google Scholar 

  • Putz B (1989) Kartoffeln: Züchtung-Anbau-Verwertung. Behr’s Verlag GmbH&Co, Hamburg, Germany, ISBN: 3-925673-45-8

  • Ralet M, Guéguen J (2000) Fractionation of potato proteins: solubility thermal coagulation and emulsifying properties. Lebensm-Wiss u Technol 33:380–387

    Article  CAS  Google Scholar 

  • Refstie S, Tiekstra HAJ (2003) Potato protein concentrate with low content of solanidine glycoalkaloids in diets for Atlantic salmon (Salmo salar). Aquaculture 216:283–298

    Article  CAS  Google Scholar 

  • Rexen B (1976) Studies of protein of potatoes. Potato Res 19:189–202

    Article  CAS  Google Scholar 

  • Sardi L, Paganelli R, Parisini P, Simioli M, Martelli G (2005) The replacement of fishmeal by plant proteins in piglet production. Ital J Anim Sci 4:449–451

    Article  Google Scholar 

  • Schupan W (1959) Studies on the essential amino acids in potatoes II: the biological value of protein of potato (Solanum tuberosum L.) with special reference to nutritional experiments and to essential amino acids. Qual Pl Mater veg 6:16–38

    Article  Google Scholar 

  • Schupan W (1970) Control of plant proteins: the influence of genetics and ecology of plant foods. In: Lawrie RA (ed) Protein as human food. AVI Publishing Co, Westport, pp 245–265

    Chapter  Google Scholar 

  • Shenk JS, Westerhaus MO (1996) Calibration the ISI way. In: Davies AMC, Williams P (eds) Near Infrared Technology: The Future Waves. NIR Publications, Chichester, pp 198–202

    Google Scholar 

  • Shewry PR (2003) Tuber storage proteins. Ann Bot 91:755–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosulski FW, Imafidon GI (1990) Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods. J Agric Food Chem 38:1351–1356

    Article  CAS  Google Scholar 

  • Tkachuk R (1981) Oil and protein analysis of whole rapeseed kernels by near infrared reflectance spectroscopy. J Am Oil Chem Soc 58:819–822

    Article  CAS  Google Scholar 

  • Tuśnio A, Pastuszewska E, Święch E, Taciak M (2011) Response of young pigs to feeding potato protein and potato fibre—nutritional, physiological and biochemical parameters. J Anim Feed Sci 20:361–378

    Google Scholar 

  • van Gelder WMJ (1981) Conversion factor from nitrogen to protein for potato tuber protein. Potato Res 24:423–425

    Article  Google Scholar 

  • von Koerber K, Männle T, Leitzmann C (2012): Vollwert-Ernährung: Konzeption einer zeitgemäßen und nachhaltigen Ernährung, 11th edn. Karl F Haug Verlag, Stuttgart, Germany, ISBN: 978-3-8304-7494-4

  • Windham WR, Mertens DR, Barton II FE (1989) Protocol for NIRS Calibration: Sample Selection and Equation Development and Validation. In: Martens GC, Shenk JS, Barton II FE (ed) Near Infrared Reflectance Spectroscopy (NIRS): Analysis of Forage Quality Agricultural Handbook, No. 643. Agricultural Research Service, United States Department of Agriculture, pp 96–103

  • Wittkop B, Snowdon RJ, Friedt W (2012) New NIRS calibration for fiber fractions reveal broad genetic variation in Brassica napus seed quality. J Agric Food Chem 60:2248–2256

    Article  CAS  PubMed  Google Scholar 

  • Wojnowska I, Poznanski S, Bednarski W (1981) Processing of potato protein concentrates and their properties. J Food Sci 47:167–172

    Article  CAS  Google Scholar 

  • Woolfe JA (1996) Die Kartoffel in der menschlichen Ernährung. Behr’s Verlag GmbH&Co, Hamburg, Germany, ISBN: 3-86022-247-3

  • Xie LH, Tang SQ, Chen N, Luo J, Jiao GA, Shao GN, Wei XJ, Hu PS (2014) Optimisation of near-infrared reflectance model in measuring protein and amylose content of rice flour. Food Chem 142:92–100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Wittkop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernhard, T., Truberg, B., Friedt, W. et al. Development of Near-Infrared Reflection Spectroscopy Calibrations for Crude Protein and Dry Matter Content in Fresh and Dried Potato Tuber Samples. Potato Res. 59, 149–165 (2016). https://doi.org/10.1007/s11540-016-9318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-016-9318-8

Keywords

Navigation