Skip to main content
Log in

Stochastic Analysis of Reaction–Diffusion Processes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Reaction and diffusion processes are used to model chemical and biological processes over a wide range of spatial and temporal scales. Several routes to the diffusion process at various levels of description in time and space are discussed and the master equation for spatially discretized systems involving reaction and diffusion is developed. We discuss an estimator for the appropriate compartment size for simulating reaction–diffusion systems and introduce a measure of fluctuations in a discretized system. We then describe a new computational algorithm for implementing a modified Gillespie method for compartmental systems in which reactions are aggregated into equivalence classes and computational cells are searched via an optimized tree structure. Finally, we discuss several examples that illustrate the issues that have to be addressed in general systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. Other scalings may be applicable in other regimes, but would lead to different evolution equations (Hillen and Othmer 2000).

  2. These estimates are predicated on a uniform distribution of species in the compartments. They could be very different if there are spatial gradients, but estimates are difficult in that case.

  3. Here and hereafter we assume that block sizes are chosen so that N c is a multiple of m.

References

  • Agbanusi, I. C., & Isaacson, S. A. (2013). A comparison of bimolecular reaction models for stochastic reaction diffusion models. arXiv:1301.0547.

  • Ander, M., Beltrao, P., Di Ventura, B., Ferkinghoff-Borg, J., Foglierini, M., Kaplan, A., Lemerle, C., Tomas-Oliveira, I., & Serrano, L. (2004). SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: analysis of simple networks. Syst. Biol., 1(1), 129–138.

    Article  Google Scholar 

  • Applebaum, D. (2004). Lévy processes and stochastic calculus (Vol. 93). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Arnold, L. (1974). Stochastic differential equations, theory and applications. New York: Wiley-Interscience.

    MATH  Google Scholar 

  • Ashkenazi, M., & Othmer, H. G. (1978). Spatial patterns in coupled biochemical oscillators. J. Math. Biol., 5, 305–350.

    MathSciNet  MATH  Google Scholar 

  • Bernstein, D. (2005). Simulating mesoscopic reaction–diffusion systems using the Gillespie algorithm. Phys. Rev. E, 71(4 Pt 1), 041103.

    Article  MathSciNet  Google Scholar 

  • Callen, H. B. (1960). Thermodynamics. New York: Wiley.

    MATH  Google Scholar 

  • Cao, Y., Li, H., & Petzold, L. (2004). Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. J. Chem. Phys., 121(9), 4059–4067.

    Article  Google Scholar 

  • Capasso, V., & Bakstein, D. (2005). An introduction to continuous-time stochastic processes: theory, models, and applications to finance, biology, and medicine. New York: Birkhauser.

    MATH  Google Scholar 

  • Chueh, K. N., Conley, C. C., & Smoller, J. A. (1977). Positively invariant regions for systems of nonlinear diffusion equations. Indiana University Math. J., 26(2), 373–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Conway, E., Hoff, D., & Smoller, J. (1978). Large time behavior of solutions of systems of nonlinear reaction–diffusion equations. SIAM J. Appl. Math., 35(1), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  • Elf, J., & Ehrenberg, M. (2004). Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. IET Syst. Biol., 1, 230–236.

    Article  Google Scholar 

  • Erban, R., & Othmer, H. (2005). From signal transduction to spatial pattern formation in E. coli: a paradigm for multi-scale modeling in biology. Multiscale Model. Simul., 3(2), 362–394.

    Article  MathSciNet  MATH  Google Scholar 

  • Erban, R., & Othmer, H. G. (2007). Taxis equations for amoeboid cells. J. Math. Biol., 54(6), 847–885.

    Article  MathSciNet  MATH  Google Scholar 

  • Gadgil, C., Lee, C. H., & Othmer, H. G. (2005). A stochastic analysis of first-order reaction networks. Bull. Math. Biol., 67, 901–946.

    Article  MathSciNet  Google Scholar 

  • Gibson, M. A., & Bruck, J. (2000). Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A, 104, 1876–1889.

    Article  Google Scholar 

  • Gierer, A., & Meinhardt, H. (1972). A theory of biological pattern formation. Biol. Cybern., 12(1), 30–39.

    MATH  Google Scholar 

  • Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81(25), 2340–2361.

    Article  Google Scholar 

  • Hillen, T., & Othmer, H. G. (2000). The diffusion limit of transport equations derived from velocity jump processes. SIAM J. Appl. Math., 61, 751–775.

    Article  MathSciNet  MATH  Google Scholar 

  • Isaacson, S. A. (2009). The reaction–diffusion master equation as an asymptotic approximation of diffusion to a small target. SIAM J. Appl. Math., 70(1), 77–111.

    Article  MathSciNet  MATH  Google Scholar 

  • Kang, H. W., Zheng, L., & Othmer, H. G. (2012). A new method for choosing the computational cell in stochastic reaction–diffusion systems. J. Math. Biol., 65, 1017–1099.

    Article  MathSciNet  MATH  Google Scholar 

  • Kang, H. W., Zheng, L., & Othmer, H. G. (2012). The effect of the signalling scheme on the robustness of pattern formation in development. Interface Focus, 2(4), 465–486.

    Article  Google Scholar 

  • Li, H., & Petzold, L. (2006). Logarithmic direct method for discrete stochastic simulation of chemically reacting systems (Technical Report). Department of Computer Science, University of California, Santa Barbara.

  • Matzavinos, A., & Othmer, H. G. (2007). A stochastic analysis of actin polymerization in the presence of twinfilin and gelsolin. J. Theor. Biol., 249, 723–736.

    Article  MathSciNet  Google Scholar 

  • Metzler, R., & Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339(1), 1–77.

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer, H. G. (1976). Nonuniqueness of equilibria in closed reacting systems. Chem. Eng. Sci., 31, 993–1003.

    Article  Google Scholar 

  • Othmer, H. G. (1977). Current problems in pattern formation. In Some mathematical questions in biology (Vol. VIII, pp. 57–85). Providence: Am. Math. Soc.

    Google Scholar 

  • Othmer, H. G., Dunbar, S. R., & Alt, W. (1988). Models of dispersal in biological systems. J. Math. Biol., 26, 263–298.

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer, H. G., & Aldridge, J. A. (1978). The effects of cell density and metabolite flux on cellular dynamics. J. Math. Biol., 5, 169–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer, H. G., & Xue, C. (2013). The mathematical analysis of biological aggregation and dispersal: progress, problems and perspectives. In M. Lewis, P. Maini, & S. Petrovskii (Eds.), Dispersal, individual movement and spatial ecology: a mathematical perspective, Heidelberg: Springer.

    Google Scholar 

  • Prigogine, I., & DeFay, R. (1954). Chemical thermodynamics. New York: Longmans, Green.

    Google Scholar 

  • Sato, K. I. (1999). Lévy processes and infinitely divisible distributions. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Shimmi, O., & O’Connor, M. B. (2003). Physical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in Bmp signals during dorsoventral patterning of the Drosophila embryo. Development, 130(19), 4673–4682.

    Article  Google Scholar 

  • Tomioka, R., Kimura, H., Kobayashi, T. J., & Aihara, K. (2004). Multivariate analysis of noise in genetic regulatory networks. J. Theor. Biol., 229(4), 501–521.

    Article  MathSciNet  Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, Biol. Sci., 237, 37–72.

    Article  Google Scholar 

  • Umulis, D. M., & Othmer, H. G. (2013). Mechanisms of scaling in spatial pattern formation. Development (to appear).

  • Weiss, G. H. (1994). Aspects and applications of the random walk. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Wilemski, G. (1976). On the derivation of Smoluchowski equations with corrections in the classical theory of Brownian motion. J. Stat. Phys., 14(2), 153–169.

    Article  Google Scholar 

  • Xue, C., & Othmer, H. G. (2009). Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math., 70(1), 133–167.

    Article  MathSciNet  MATH  Google Scholar 

  • Xue, C., Budrene, E. O., & Othmer, H. G. (2011). Radial and spiral stream formation in Proteus mirabilis colonies. PLoS Comput. Biol., 7(12), e1002332.

    Article  Google Scholar 

Download references

Acknowledgements

Research supported in part by Grant # GM 29123 from the National Institutes of Health, and in part by the Mathematical Biosciences Institute and the National Science Foundation under grant DMS 0931642.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans G. Othmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Kang, HW. & Othmer, H.G. Stochastic Analysis of Reaction–Diffusion Processes. Bull Math Biol 76, 854–894 (2014). https://doi.org/10.1007/s11538-013-9849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9849-y

Keywords

Navigation