Skip to main content
Log in

On the derivation of Smoluchowski equations with corrections in the classical theory of Brownian motion

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Differential equations governing the time evolution of distribution functions for Brownian motion in the full phase space were first derived independently by Klein and Kramers. From these so-called Fokker-Planck equations one may derive the reduced differential equations in coordinate space known as Smoluchowski equations. Many such derivations have previously been reported, but these either involved unnecessary assumptions or approximations, or were performed incompletely. We employ an iterative reduction scheme, free of assumptions, and calculate formally exact corrections to the Smoluchowski equations for many-particle systems with and without hydrodynamic interaction, and for a single particle in an external field. In the absence of hydrodynamic interaction, the lowest order corrections have been expressed explicitly in terms of the coordinate space distribution function. An additional application of the method is made to the reduction of the stress tensor used in evaluating the intrinsic viscosity of particles in solution. Most of the present work is based on classical Brownian motion theory, but brief consideration is given in an appendix to some recent developments regarding non-Markovian equations for Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein,Ann. d. Phys. 17:549 (1905) [English translation reprinted inAlbert Einstein, Investigations on the Theory of the Brownian Movement, R. Furth, ed., Dover, New York (1956)].

    Google Scholar 

  2. M. v. Smoluchowski,Ann. d. Phys. 21:756 (1906).

    Google Scholar 

  3. P. Langevin,Comptes rendus 146:530 (1908).

    Google Scholar 

  4. A. D. Fokker, Diss. Leiden, (1913);Ann. d. Physik 43:812 (1914).

  5. M. Planck,Sitz, der preuss. Akad. 23:324 (1917).

    Google Scholar 

  6. M. v. Smoluchowski,Ann. d. Physik 48:1103 (1915).

    Google Scholar 

  7. H. A. Kramers,Physica 7:284 (1940).

    Google Scholar 

  8. O. Klein,Ark. Mat., Astron., Fys. 16(5) (1922).

  9. S. Chandrasekhar,Rev. Mod. Phys. 15:1 (1943) [reprinted inSelected Papers on Noise and Stochastic Processes, N. Wax, ed., Dover, New York (1954)].

    Google Scholar 

  10. R. W. Davies,Phys. Rev. 93:1169 (1954).

    Google Scholar 

  11. E. Nelson,Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, N.J. (1967).

    Google Scholar 

  12. L. S. Ornstein,Versl. Acad. Amst. 26:1005 (1917) [English translation inProc. Acad. Amst. 21:96 (1919)].

    Google Scholar 

  13. G. E. Uhlenbeck and L. S. Ornstein,Phys. Rev. 36:823 (1930) [reprinted inSelected Papers on Noise and Stochastic Processes, N. Wax, ed., Dover, New York (1954)].

    Google Scholar 

  14. J. C. Maxwell,Phil. Trans. Roy. Soc. 157:72 (1867); H. Grad,Comm. Pure Appl. Math. 2:331 (1949); E. A. Guggenheim,Elements of the Kinetic Theory of Gases, Pergamon Press, Oxford (1960), p. 34.

    Google Scholar 

  15. J. G. Kirkwood, F. P. Buff, and M. S. Green,J. Chem. Phys. 17:988 (1949).

    Google Scholar 

  16. A. Suddaby, Ph.D. Thesis, University of London (1954).

  17. R. Eisenschitz and A. Suddaby, inProc. 2nd Int. Cong. Rheo., Butterworth, London (1954), p. 320; R. Eisenschitz,Statistical Theory of Irreversible Processes, Oxford University Press, London (1958), pp. 31–33.

    Google Scholar 

  18. A. Suddaby and J. R. N. Miles,Proc. Phys. Soc. (London) 77:1170 (1961).

    Google Scholar 

  19. S. A. Rice and P. Gray,The Statistical Mechanics of Simple Liquids, Wiley-Interscience, New York (1965), pp. 249–253, 346–349.

    Google Scholar 

  20. G. H. A. Cole,The Statistical Theory of Classical Simple Dense Fluids, Pergamon Press, Oxford (1967), pp. 211–214.

    Google Scholar 

  21. H. C. Brinkman,Physica 22:29 (1956).

    Google Scholar 

  22. R. A. Sack,Physica 22:917 (1956).

    Google Scholar 

  23. R. O. Davies,Physica 23:1067 (1957).

    Google Scholar 

  24. E. Guth,Phys. Rev. 126:1213 (1962);Adv. Chem. Phys. 25:363 (1969).

    Google Scholar 

  25. L. Monchick,J. Chem. Phys. 62:1907 (1975).

    Google Scholar 

  26. P. C. Hemmer,Physica 27:79 (1961).

    Google Scholar 

  27. P. Resibois,Electrolyte Theory, Harper and Row, New York (1968), pp. 78–84, 154–157.

    Google Scholar 

  28. W. G. N. Slinn and S. F. Shen,J. Stat. Phys. 3:291 (1971).

    Google Scholar 

  29. J. L. Aguirre and T. J. Murphy,Phys. Fluids 14:2050 (1971).

    Google Scholar 

  30. T. J. Murphy and J. L. Aguirre,J. Chem. Phys. 57:2098 (1972).

    Google Scholar 

  31. S. R. de Groot and P. Mazur,Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962), pp. 191–194.

    Google Scholar 

  32. H. Yamakawa, G. Tanaka, and W. H. Stockmayer,J. Chem. Phys. 61:4535 (1974).

    Google Scholar 

  33. C. F. Curtiss, R. B. Bird, and O. Hassager, WIS-TCI-507, to appear inAdv. Chem. Phys.

  34. J. G. Kirkwood,Rec. Trav. Chim. 68:648 (1949).

    Google Scholar 

  35. J. Riseman and J. G. Kirkwood, inRheology, I, F. Eirich, ed., Academic Press, New York (1956).

    Google Scholar 

  36. H. Falkenhagen and W. Ebeling,Phys. Lett. 15:131 (1965); W. Ebeling,Ann. Physik 16:147 (1965); P. Gray,Mol. Phys. 21:675 (1971);7:255 (1964).

    Google Scholar 

  37. J. L. Lebowitz and E. Rubin,Phys. Rev. 131:2381 (1963).

    Google Scholar 

  38. R. M. Mazo,J. Stat. Phys. 1:559 (1969).

    Google Scholar 

  39. J. M. Deutch and I. Oppenheim,J. Chem. Phys. 54:3547 (1971).

    Google Scholar 

  40. R. Zwanzig,Adv. Chem. Phys. 25:325 (1969).

    Google Scholar 

  41. T. J. Murphy,J. Chem. Phys. 56:3487 (1972).

    Google Scholar 

  42. B. U. Felderhof, J. M. Deutch, and U. Titulaer,J. Chem. Phys. 63:740 (1975).

    Google Scholar 

  43. W. H. Stockmayer, G. Wilemski, H. Yamakawa, and G. Tanaka,J. Chem. Phys. 63:1039 (1975).

    Google Scholar 

  44. W. H. Stockmayer, W. Gobush, Y. Chikahisa, and D. K. Carpenter,Chem. Soc. Faraday Disc. 49:182 (1970).

    Google Scholar 

  45. E. G. D. Cohen, ed.,Fundamental Problems in Statistical Mechanics III, North-Holland, Amsterdam (1975).

    Google Scholar 

  46. L.-P. Hwang and J. H. Freed,J. Chem. Phys. 63:119 (1975).

    Google Scholar 

  47. E. L. Chang, R. M. Mazo, and J. T. Hynes,Mol. Phys. 28:997 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilemski, G. On the derivation of Smoluchowski equations with corrections in the classical theory of Brownian motion. J Stat Phys 14, 153–169 (1976). https://doi.org/10.1007/BF01011764

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011764

Key words

Navigation