Skip to main content

Advertisement

Log in

Laser Doppler perfusion monitoring and imaging: novel approaches

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Laser Doppler flowmetry (LDF) is a non invasive method enabling the monitoring of microvascular blood flow, a very important marker of tissue health. This article gives an overview on the concept of LDF for microvascular perfusion monitoring and imaging. It first describes the theoretical background of the technique. Then, the benefits of LDF signal processing are shown through clinical examples: use of time–frequency representations and wavelets. Afterwards, the paper introduces novel approaches of velocity components. For that purpose, a work providing the determination of the velocities relative contribution in physiologically relevant units (mm/s) is presented. Imaging perfusion is also reviewed through methods based on laser speckle. The most prominent disadvantage of the latter devices being the time needed to produce a perfusion image, solutions are proposed in the last part of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. A detailed description of the work presented in this paragraph can be found in Ref. [26].

  2. A detailed description of the work presented in this paragraph can be found in Ref. [27].

References

  1. Almond N (1994) Laser Doppler flowmetry: theory and practice. In: Belcaro GV, Hoffman U, Bollinger A, Nicolaides AN (eds) Laser Doppler. Med-Orion, London, pp. 17–32

    Google Scholar 

  2. Belcaro GV, Hoffman U, Bollinger A, Nicolaides AN (eds) (1994) Laser Doppler. Med-Orion, London

  3. Bonner RF, Nossal R (1981) Model for laser Doppler measurements of blood flow in tissue. Appl Opt 20:2097–2107

    Google Scholar 

  4. Bonner RF, Nossal R (1990) Principles of laser-Doppler flowmetry. In: Shepherd AP, Öberg PÅ (eds) Laser-Doppler blood flowmetry. Kluwer, Massachusetts, pp 17–45

    Google Scholar 

  5. Borgos J (1994) Principles of instrumentation: calibration and technical issues. In: Belcaro GV, Hoffman U, Bollinger A, Nicolaides AN (eds) Laser Doppler. Med-Orion, London, pp 3–16

    Google Scholar 

  6. Bracic Lotric M, Stefanovska A, Stajer D, Urbancic-Rovan V (2000) Spectral components of heart rate variability determined by wavelet analysis. Physiol Meas 21:441–457

    Article  Google Scholar 

  7. Bracic M, Stefanovska A (1998) Wavelet-based analysis of human blood-flow dynamics. B Math Biol 60:919–935

    Article  MATH  Google Scholar 

  8. Bracic M, Stefanovska A (1999) Wavelet analysis in studying the dynamics of blood circulation. Nonlinear Phenom Complex Syst 2:68–77

    Google Scholar 

  9. Briers JD, Richards G, He XW (1999) Capillary blood flow monitoring by laser speckle contrast analysis (Lasca). J Biomed Opt 4:164–175

    Article  Google Scholar 

  10. Cummins HZ, Swinney HL (1970) Light beating spectroscopy. In: Wolf E (ed) Progress in optics. North-Holland, Amsterdam, pp 135–200

  11. Duteil L, Bernengo J, Schalla W (1985) A double wavelength laser Doppler system to investigate skin microcirculation. IEEE Trans Biomed Eng BME 32:439–447

    Article  Google Scholar 

  12. Essex TJ, Byrne PO (1991) A laser Doppler scanner for imaging blood flow in skin. J Biomed Eng 13:189–194

    Article  Google Scholar 

  13. Forrester AT (1961) Photoelectric mixing as a spectroscopic tool. J Opt Soc Am 51:253–259

    Google Scholar 

  14. Forrester KR, Stewart C, Tulip J, Leonard C, Bray RC (2002) Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue. Med Biol Eng Comput 40:687–697

    Article  Google Scholar 

  15. Forrester KR, Tulip J, Leonard C, Stewart C, Bray RC (2004) A laser speckle imaging technique for measuring tissue perfusion. IEEE Trans Biomed Eng 51:2074–2084

    Article  Google Scholar 

  16. Fredriksson I, Larsson M, Strömberg T (2006) Absolute flow velocity components in laser Doppler flowmetry. In: Proceedings of SPIE, San José, CA, vol 6094, 60940A, 12 p

  17. Fromy B, Abraham P, Saumet JL (1998) Non-nociceptive capsaicin-sensitive nerve terminal stimulation allows for an original vasodilatory reflex in the human skin. Brain Res 811:166–168

    Article  Google Scholar 

  18. Fromy B, Merzeau S, Abraham P, Saumet JL (2000) Mechanisms of the cutaneous vasodilator response to local external pressure application in rats: involvement of CGRP, neurokinins, prostaglandins and NO. Br J Pharmacol 131:1161–1171

    Article  Google Scholar 

  19. Fromy B, Abraham P and Saumet JL (2000) Progressive calibrated pressure device to measure cutaneous blood flow changes to external pressure strain. Brain Res Protoc 5:198–203

    Article  Google Scholar 

  20. Fromy B, Abraham P, Bouvet C, Bouhanick B, Fressinaud P, Saumet JL (2002) Early decrease of skin blood flow in response to locally applied pressure in diabetic subjects. Diabetes 51:1214–1217

    Article  Google Scholar 

  21. Geyer MJ, Jan YK, Brienza DM, Boninger ML (2004) Using wavelet analysis to characterize the thermoregulatory mechanisms of sacral skin blood flow. J Rehabil Res Dev 41:797–806

    Article  Google Scholar 

  22. Gush RJ, King TA, Jayson MI (1984) Aspects of laser light scattering from skin tissue with application to laser Doppler blood flow measurement. Phys Med Biol 29:1463–1476

    Article  Google Scholar 

  23. Holloway GA, Watkins DW (1977) Laser Doppler measurement of cutaneous blood flow. J Invest Dermatol 69:306–309

    Article  Google Scholar 

  24. Humeau A, Koitka A, Saumet J L and L’Huillier JP (2003) Dynamic characteristics of the cutaneous vasodilator response to a local external pressure application detected by the laser Doppler flowmetry technique on anaesthetised rats. In: Boas DA (ed) Photon migration and diffuse-light imaging. Proceedings of SPIE-OSA biomedical optics, SPIE 5138, pp 72–79

  25. Humeau A, Koïtka A, Abraham P, Saumet JL, L’Huillier JP (2004) Time-frequency analysis of laser Doppler flowmetry signals recorded in response to a progressive pressure applied locally on anaesthetised healthy rats. Phys Med Biol 49:843–857

    Article  Google Scholar 

  26. Humeau A, Koïtka A, Abraham P, Saumet JL, L’Huillier JP (2004) Spectral components of laser Doppler flowmetry signals recorded in healthy and type 1 diabetic subjects at rest and during a local and progressive cutaneous pressure application: scalogram analyses. Phys Med Biol 49:3957–3970

    Article  Google Scholar 

  27. Humeau A, Koïtka A, Abraham P, Saumet JL, L’Huillier JP (2004) Dynamic characteristics of laser Doppler flowmetry signals obtained in response to a local and progressive pressure applied on diabetic and healthy subjects. In: Wyrowski F (ed) Photon management. Proceedings of SPIE, vol 5456, SPIE, Bellingham, WA, pp 307–314

  28. Humeau A, Fizanne L, Garry A, Saumet JL, L’Huillier JP (2004) Signal processing methodology to study the cutaneous vasodilator response to a local external pressure application detected by laser Doppler flowmetry. IEEE Trans Biomed Eng 51:190–192

    Article  Google Scholar 

  29. Johansson K, Jakobsson A, Lindahl K, Lindhagen J, Lundgren O, Nilsson GE (1991) Influence of fibre diameter and probe geometry on the measuring depth of laser Doppler flowmetry in the gastrointestinal application. Int J Microcirc Clin Exp 10:219–229

    Google Scholar 

  30. Kirsner RS, Haiken M, Garland LD (1993) Margin assessment of selected basal cell carcinomas utilizing laser Doppler velocimetry. Int J Dermatol 32:290–292

    Google Scholar 

  31. Koïtka A, Abraham P, Bouhanick B, Sigaudo-Roussel D, Demiot C, Saumet JL (2004) Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes. Diabetes 53:721–725

    Article  Google Scholar 

  32. Kvandal P, Landsverk SA, Bernjak A, Stefanovska A, Kvernmo HD, Kirkeboen KA (2006) Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc Res PMID: 16854436

  33. Kvernmo HD, Stefanovska A, Bracic M, Kirkebøen KA, Kvernebo K (1998) Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise. Microvasc Res 56:173–182

    Article  Google Scholar 

  34. Kvernmo HD, Stefanovska A, Bracic M, Kirkeboen KA, Kvernebo K (1998) Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise. Microvasc Res 56:173–182

    Article  Google Scholar 

  35. Kvernmo HD, Stefanovska A, Kirkeboen KA, Kvernebo K (1999) Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators. Microvasc Res 57:298–309

    Article  Google Scholar 

  36. Landsverk A, Kvandal P, Kjelstrup T, Benko U, Bernjak A, Stefanovska A, Kvernmo H, Kirkeboen KA (2006) Human skin microcirculation after brachial plexus block evaluated by wavelet transform of the laser Doppler flowmetry signal. Aesthesiology 105:478–484

    Article  Google Scholar 

  37. Larsson M, Strömberg T (2006) Toward a velocity-resolved microvascular blood flow measure by decomposition of the laser Doppler spectrum. J Biomed Opt 11:14024–1-9

    Article  Google Scholar 

  38. Larsson M, Steenbergen W, Strömberg T (2002) Influence of optical properties and fibre separation on laser Doppler flowmetry. J Biomed Opt 7:236–243

    Article  Google Scholar 

  39. Meglinsky IV, Matcher SJ (2001) Modelling the sampling volume for skin blood oxygenation measurements. Med Biol Eng Comput 39:44–50

    Article  Google Scholar 

  40. Moor Instruments Ltd (2001) Reference list, http://www.moor.co.uk Moor Instruments Ltd

  41. de Mul FFM, van Spijker J, van der Plas D, Greve J, Aarnoudse JG, Smits TM (1984) Mini laser-Doppler (blood) flow monitor with diode laser source and detection integrated in the probe. Appl Opt 23:2970–2973

    Article  Google Scholar 

  42. Nilsson GE (1984) Signal processor for Laser Doppler Tissue Flowmeters. Med Biol Eng Comput 22:343–348

    Article  Google Scholar 

  43. Nilsson H (2002) Photon migration in tissue. Laser induced fluorescence for cancer diagnostics and influence of optical properties on microvascular Doppler spectroscopy. PhD Thesis, Faculty of health sciences, Linköpings Universitet

  44. Nilsson GE, Tenland T, Öberg PÅ (1980) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy. IEEE Trans Biomed Eng BME 27:12–19

    Article  Google Scholar 

  45. Nilsson GE, Tenland T, Öberg PÅ (1980) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng BME 27:597–604

    Article  Google Scholar 

  46. Nilsson GE, Jakobsson A, WÅrdell K (1989) Imaging of tissue blood flow by coherent light scattering, in IEEE 11th Ann EMBS Conf., Seattle, WA

  47. Nilsson G, Jakobsson A, WÅrdell K (1991) Tissue perfusion monitoring and imaging by coherent light scattering. In: Soares ODD, Scheggi AM (eds) Bioptics: optics in biomedicine and environmental sciences, vol 1524, pp 90–109

  48. Nilsson GE, Salerud EG, Strömberg T, WÅrdell K (2003) Laser Doppler perfusion monitoring and imaging. In: Vo-Dinh T (eds) Biomedical photonics handbook. CRC Press, Boca Raton

    Google Scholar 

  49. Öberg PÅ (1990) Laser-Doppler flowmetry. Crit Rev Biomed Eng 18:125–163

    Google Scholar 

  50. Perimed A (2001) Reference list, http://www.perimed.se Perimed AB

  51. Rakotomamonjy A, Coast D, Marché P (1999) Wavelet-based enhancement of signal-averaged electrocardiograms for late potential detection. Med Biol Eng Comput 37:750–759

    Article  Google Scholar 

  52. Riva C, Ross B, Benedek GB (1972) Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol 11:936–944

    Google Scholar 

  53. Salerud EG, Nilsson GE (1986) Integrating probe for tissue laser Doppler flowmeters. Med Biol Eng Comput 24:415–419

    Article  Google Scholar 

  54. Serov A, Steenbergen W, De Mul F (2001) Prediction of the photodetector signal generated by Doppler-induced speckle fluctuations: theory and some validations. J Opt Soc Am 18:622–630

    Google Scholar 

  55. Serov A, Steenbergen W, de Mul F (2002) Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor. Opt Lett 27:300–302

    Google Scholar 

  56. Serov A, Steinacher B, Lasser T (2005) Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera. Opt Express 13:3681–3689

    Article  Google Scholar 

  57. Shepherd AP (1990) History of laser-Doppler blood flowmetry. In: Shepherd AP, Öberg PÅ (eds) Laser-Doppler blood flowmetry. Kluwer, Boston

    Google Scholar 

  58. Shepherd AP, Öberg PÅ (eds) (1990) Laser-Doppler blood flowmetry, Kluwer, Boston

  59. Söderström T, Stefanovska A, Veber M, Svensson H (2003) Involvement of sympathetic nerve activity in skin blood flow oscillations in humans. Am J Physiol Heart Circ Physiol 284:H1638–1646

    Google Scholar 

  60. Stefanovska A, Bracic M and Kvernmo HD (1999) Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans Biomed Eng 46:1230–1239

    Article  Google Scholar 

  61. Stern MD (1975) In vivo evaluation of microcirculation by coherent light scattering. Nature 254:56–58

    Article  Google Scholar 

  62. Stern MD, Lappe DL, Bowen PD, Chimosky JE, Holloway GA, Keiser HR, Bowman RL (1977) Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. Am J Physiol 232:H441–H448

    Google Scholar 

  63. Stücker M, Horstmann I, Nüchel C, Röchling A, Hoffmann K, Altmeyer P (1999) Blood flow compared in benign melanocytic naevi, malignant melanomas and basal cell carcinomas. Clin Exp Dermatol 24:107–111

    Article  Google Scholar 

  64. Tur E, Brenner S (1992) Cutaneous blood flow measurements for the detection of malignancy in pigmented skin lesions. Dermatology 184:8–11

    Article  Google Scholar 

  65. Urbancic-Rovan V, Bernjak A, Stefanovska A, Azman-Juvan K, Kocijancic A (2006) Macro- and microcirculation in the lower extrmities—possible relationship. Diabetes Res Clin Pract 73:166–173

    Article  Google Scholar 

  66. Veber M, Bandrivskyy A, Clarkson PBM, McClintock PVE, Stefanovska A (2004) Wavelet analysis of blood flow dynamics: effect on the individual oscillatory components of iontophoresis wit pharmacologically neutral electrolytes. Phys Med Biol 49:N111-N117

    Article  Google Scholar 

  67. WÅrdell K, Jakobsson A, Nilsson GE (1993) Laser Doppler perfusion imaging by dynamic light scattering. IEEE Trans Biomed Eng 40:309–316

    Article  Google Scholar 

  68. Yuan S, Devor A, Boas DA, Dunn AK (2005) Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging. Appl Opt 44:1823–1830

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank: Marcus Larsson (PhD) and Ingemar Fredriksson (PhD student). IOP Publishing Limited for their acceptance to reproduce materials from "Humeau A, Koïtka A, Abraham P, Saumet JL, L’Huillier JP (2004) Spectral components of laser Doppler flowmetry signals recorded in healthy and type 1 diabetic subjects at rest and during a local and progressive cutaneous pressure application: scalogram analyses. Phys Med Biol 49: 3957–3970". SPIE publication for their acceptance to reproduce materials from "Humeau A, Koitka A, Saumet J L and L’Huillier JP (2003) Dynamic characteristics of the cutaneous vasodilator response to a local external pressure application detected by the laser Doppler flowmetry technique on anaesthetised rats, in Photon Migration and Diffuse-Light Imaging, David A. Boas, Editor, Proceedings of SPIE-OSA Biomedical Optics, SPIE 5138 72–79" and from "Humeau A, Koïtka A, Abraham P, Saumet JL, L’Huillier JP (2004) Dynamic characteristics of laser Doppler flowmetry signals obtained in response to a local and progressive pressure applied on diabetic and healthy subjects, in Photon Management, edited by Frank Wyrowski, Proceedings of SPIE, vol 5456 (SPIE, Bellingham, WA, 2004), pp 307–314".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Humeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humeau, A., Steenbergen, W., Nilsson, H. et al. Laser Doppler perfusion monitoring and imaging: novel approaches. Med Bio Eng Comput 45, 421–435 (2007). https://doi.org/10.1007/s11517-007-0170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0170-5

Keywords

Navigation